期刊文献+
共找到1,675篇文章
< 1 2 84 >
每页显示 20 50 100
Springback analysis and strategy for multi-stage thin-walled parts with complex geometries 被引量:4
1
作者 王耀 郎利辉 +1 位作者 S.Lauridsen 阚鹏 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1582-1593,共12页
Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was pro... Springback of a SUS321 complex geometry part formed by the multi-stage rigid-flexible compound process was studied through numerical simulations and laboratory experiments in this work.The sensitivity analysis was provided to have an insight in the effect of the evaluated process parameters.Furthermore,in order to minimize the springback problem,an accurate springback simulation model of the part was established and validated.The effects of the element size and timesteps on springback model were further investigated.Results indicate that the custom mesh size is beneficial for the springback simulation,and the four timesteps are found suited for the springback analysis for the complex geometry part.Finally,a strategy for reducing the springback by changing the geometry of the blank is proposed.The optimal blank geometry is obtained and used for manufacturing the part. 展开更多
关键词 springback model complex GEOMETRY MULTI-STAGE rigid-flexible COMPOUND process
下载PDF
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire 被引量:4
2
作者 Jin-Gang Jiang Ying-Shuai Han +3 位作者 Yong-De Zhang Yan-Jv Liu Zhao Wang Yi Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1406-1415,共10页
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement ... Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a spring- back calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback mea- surement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the move- ment of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision. 展开更多
关键词 Robotic bending Rectangular orthodonticarchwire springback mechanism Stress-strain-neutrallayer
下载PDF
Rapid Springback Compensation for Age Forming Based on Quasi Newton Method 被引量:3
3
作者 XIONG Wei GAN Zhong +1 位作者 XIONG Shipeng XIA Yushan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期551-557,共7页
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv... Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming. 展开更多
关键词 age forming quasi Newton method springback compensation mold design displacement adjustment method
下载PDF
A Numerical-analytic Method for Quickly Predicting Springback of Numerical Control Bending of Thin-walled Tube 被引量:3
4
作者 Mei ZHAN He YANG Liang HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第5期713-720,共8页
Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process... Springback is one of important factors influencing the forming quality of numerical control (NC) bending of thin-walled tube. In this paper, a numerical-analytic method for springback angle prediction of the process was put forward. The method is based on springback angle model derived using analytic method and simulation results from three-dimensional (3D) rigid-plastic finite element method (FEM). The method is validated through comparison with experimental results. The features of the method are as follows: (1) The method is high in efficiency because it combines advantages of rigid-plastic FEM and analytic method. (2) The method is satisfactory in accuracy, since the field variables used in the model is resulting from 3D rigid-plastic FEM solution, and the effects both of axial force and strain neutral axis shift have been included. (3) Research on multi-factor effects can be carried out using the method due to its advantage inheriting from rigid-plastic FEM. The method described here is also of general significance to other bending processes. 展开更多
关键词 Thin-walled tube Numerical control bending springback Numerical-analytic method 3D rigid-plastic FEM
下载PDF
An Iterative Compensation Algorithm for Springback Control in Plane Deformation and Its Application 被引量:2
5
作者 Rui Ma Chunge Wang +1 位作者 Ruixue Zhai Jun Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第2期212-223,共12页
In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite... In order to solve the springback problem in sheet metal forming, the trial and error method is a widely used method in the factory, which is time-consuming and costly for its non-direction and non-quantitative. Finite element simulation is an e ective method to predict the springback of complex shape parts, but its precision is sensitive to the simulation model, particularly material model and boundary conditions. In this paper, the simple iterative method is introduced to establish the iterative compensation algorithm, and the convergence criterion of iterative parameters is put forward. In addition, the new algorithm is applied to the V-free bending and stretch-bending processes, and the convergence of curvature and bending angle is proved theoretically and verified experimentally. At the same time,the iterative compensation experiments for plane bending show that, the new method can predict the next compensaantido tnh ev atlaureg ebta cseurdv oatnu trhe ew sitphri tnhgeb earcrko ro fo fe laecshs ttehsat,n s0 o. 5 th%a ta rteh eo btatraigneet db aefntedri n2 g-3 a nitgelrea tiwoitnhs.t Thhei se rrreosre aorf clhe sps rtohpaons e±s 0 a.1%new iterative compensation algorithm to predict springback in sheet metal forming process, where each compensation value depends only on the iteration parameter di erence before and after springback for the same forming process of same material. 展开更多
关键词 springback control ITERATIVE COMPENSATION algorithm CONVERGENCE CRITERION V-free BENDING Stretchbending
下载PDF
Effect of bending temperatures on the microstructure and springback of a TRIP steel sheet 被引量:3
6
作者 Natthasak Pornputsiri Kannachai Kanlayasiri 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期980-987,共8页
Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the eff... Transformation-induced plasticity(TRIP)steel possesses high strength and formability,enabling the use of a thinner gauge material and allowing for the fabrication of complex shapes.In this research,we measured the effect of bending temperatures on the microstructure and air-bending springback angle of TRIP steel at temperatures from 25 to 600C.Real-time in situ X-ray diffraction and scanning electron microscopy were used for pre-and postbending analysis.As the prebending temperature increased from 25C to 600C,the retained austenite(RA)volume fraction decreased,and the RA transformed to bainite at temperatures above 400C.The springback angle was positively correlated with the prebending RA volume fraction,with the smallest springback angle achieved at 400C.Additionally,the springback angle was positively correlated with the bending angle,because the RA transformation ratio contributed to increased strain hardening.Further microstructure analysis revealed that the RA became elongated in the tension direction as the bending temperatures increased. 展开更多
关键词 TRIP steel In situ X-ray diffraction Phase transformation Bending temperature springback Air-bending test
下载PDF
QUANTITATIVE PREDICTION FOR SPRINGBACK OF UNLOADING AND TRIMMING IN SHEET METAL STAMPING FORMING 被引量:7
7
作者 LiuYuqi LiuJunhua +1 位作者 HuPing LiYunxing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期190-192,196,共4页
Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending spr... Based on the elastic-plastic large deformation finite element formulation as well as the shell element combined discrete Kirchhoff theoretical plate element (DKT) with membrane square element, deep-drawing bending springback of typical U-pattern is studied. At the same time the springback values of the drawing of patterns' unloading and trimming about the satellite aerial reflecting surface are predicted and also compared with those of the practical punch. Above two springbacks all obtain satisfactory results, which provide a kind of effective quantitative pre-prediction of springback for the practical engineers. 展开更多
关键词 Sheet metal stamping forming Unloading springback Trimming springback Discrete kirchhoff theory(DKT) Finite element method
下载PDF
Springback Prediction and Optimization of Variable Stretch Force Trajectory in Three-dimensional Stretch Bending Process 被引量:6
8
作者 TENG Fei ZHANG Wanxi +1 位作者 LIANG Jicai GAO Song 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1132-1140,共9页
Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback predicti... Most of the existing studies use constant force to reduce springback while researching stretch force. However, variable stretch force can reduce springback more efficiently. The current research on springback prediction in stretch bending forming mainly focuses on artificial neural networks combined with the finite element simulation. There is a lack of springback prediction by support vector regression(SVR). In this paper, SVR is applied to predict springback in the three-dimensional stretch bending forming process, and variable stretch force trajectory is optimized. Six parameters of variable stretch force trajectory are chosen as the input parameters of the SVR model. Sixty experiments generated by design of experiments(DOE) are carried out to train and test the SVR model. The experimental results confirm that the accuracy of the SVR model is higher than that of artificial neural networks. Based on this model, an optimization algorithm of variable stretch force trajectory using particle swarm optimization(PSO) is proposed. The springback amount is used as the objective function. Changes of local thickness are applied as the criterion of forming constraints. The objection and constraints are formulated by response surface models. The precision of response surface models is examined. Six different stretch force trajectories are employed to certify springback reduction in the optimum stretch force trajectory, which can efficiently reduce springback. This research proposes a new method of springback prediction using SVR and optimizes variable stretch force trajectory to reduce springback. 展开更多
关键词 springback prediction support vector regression(SVR) response surface particle swarm optimization(PSO)
下载PDF
A reliability study of springback on the sheet metal forming process under probabilistic variation of prestrain and blank holder force 被引量:4
9
作者 Hatem Mrad Mohamed Bouazara Gholamreza Aryanpour 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期557-566,共10页
This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on spr... This work deals with a reliability assessment of springback problem during the sheet metal forming process. The effects of operative parameters and material properties, blank holder force and plastic prestrain, on springback are in- vestigated. A generic reliability approach was developed to control springback. Subsequently, the Monte Carlo simula- tion technique in conjunction with the Latin hypercube sam- pling method was adopted to study the probabilistic spring- back. Finite element method based on implicit/explicit al- gorithms was used to model the springback problem. The proposed constitutive law for sheet metal takes into account the adaptation of plastic parameters of the hardening law for each prestrain level considered. Rackwitz-Fiessler al- gorithm is used to find reliability properties from response surfaces of chosen springback geometrical parameters. The obtained results were analyzed using a multi-state limit reli- ability functions based on geometry compensations. 展开更多
关键词 springback ~ Prestrain ~ Multi-state limit func-tion ~ Constitutive law ~ Monte Carlo
下载PDF
Application and comparison of different elastoplastic constitutive models for springback simulation of aluminum sheet forming 被引量:1
10
作者 HU Xiao DIAO Keshan LI Yanbo 《Baosteel Technical Research》 CAS 2016年第3期42-48,共7页
Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model... Springback is considered to be one of the most important problems in aluminum sheet stamp forming, leading to deviation from the designed target shape and assembly defects. In this study, a springback simulation model based on the benchmark of a Jaguar Land Rover aluminum panel is established. We embed several elastoplastic constitutive models ( Barlat' s 89, Barlat' s YLD2000, Yoshida-Uemori (YU) + Barlat' s 89, and YU + Barlat' s YLD2000) in the finite element model,in order to discuss the influence of the constitutive model selection on springback prediction in aluminum sheet forming. 展开更多
关键词 springback aluminum sheet torming elastoplastic constitutive model
下载PDF
Automobile Roof Panel Forming: Prediction and Compensation of Springback and Application of Numerical Simulation Based on Dynaform 被引量:1
11
作者 Amsalu K. Addis 《World Journal of Engineering and Technology》 2018年第4期914-928,共15页
The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challe... The forming of sheet metal in a desired and attractive shape is a process that requires an understanding of materials, mechanics and manufacturing principles. Manufacturing a consistent sheet metal component is challenging due to the nonlinear interactions of various material and process parameters. One of the major issues in the manufacturing of inconsistent?sheet metal?parts is springback. Springback is the elastic strain recovery in the material after the tooling is removed and the final shape of the product depends on the springback amount formed. In this study according to the result of simulation the inverted compensation method is adopted to optimize die surface design. Similarly, to predict and compensate the springback error this study presented an analytical approach of forming process in a stepwise modification of the automobile roof panel. Moreover, based on?Dynaform?and?finite element analysis of sheet metal stamping simulation the sprinback in automobile roof panel is predicted and compensated.?In addition, this study examines the significant requirements of the sheet metal forming precision of automobile body and the simulation of forming, stamping and springback of automobile roof panel is carried out, and the result of simulation also is analyzed. 展开更多
关键词 springback Sheet Metal FORMING DYNAFORM Finite Element Method (FEM) Auto ROOF PANEL
下载PDF
Improvement of springback prediction of wide sheet metal air bending process
12
作者 李建 赵军 +1 位作者 孙红磊 马瑞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期310-315,共6页
Accurate springback prediction of wide sheet metal air bending process is important to improve product quality and ensure the precision in dimension. The definition of elastic limit bend angle was proposed. Based on c... Accurate springback prediction of wide sheet metal air bending process is important to improve product quality and ensure the precision in dimension. The definition of elastic limit bend angle was proposed. Based on cantilever beam elastic deforming theory, the geometrical parameters of forming tools, sheet thickness and the material yielding strain were derived and validated by the finite element method (FEM). Employing the degree of elastic limit bend angle, the equation for springback prediction was constructed, the results calculated fit well with experimental data. Especially for the small bend angle, the predicted results by equation were applied to conduct the springback prediction and compensation in industries and give closer correlation to the experimental data than those calculated by engineering theory of plastic bending. 展开更多
关键词 ELASTIC LIMIT BEND ANGLE springback prediction ELASTIC recovery FINITE element method
下载PDF
SPRINGBACK SIMULATION AND ANALYSIS OF STRONG ANISOTROPIC SHEET METALS IN U-CHANNEL BENDING PROCESS
13
作者 柳玉起 胡平 王锦程 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2002年第3期264-273,共10页
The springback phenomenon of strong anisotropic sheet metals with U-channel bending as well as deep-drawing is numerically studied in detail by using Updating Lagrange FEM based on virtual work-rate principle, Kirchho... The springback phenomenon of strong anisotropic sheet metals with U-channel bending as well as deep-drawing is numerically studied in detail by using Updating Lagrange FEM based on virtual work-rate principle, Kirchhoff shell element models and the Barlat-Lian planar anisotropic yield function. Simulation results are compared with a benchamark test. Very good agreement is obtained between numerical and test results. The focus of the present study is on the numerical simulation of the springback characteristics of the strong anisotropic sheet metals after unloading. The effects of the planar anisotropy coefficients and yield function exponent in the B-L yield function on the springback characteristics are discussed in detail. Some conclusions are given. 展开更多
关键词 springback planar anisotropy Updating Lagrange FEM Kirchhoff shell element
下载PDF
Application of Data Mining Method to Improve the Accuracy of Springback Prediction in Sheet Metal Forming
14
作者 许京荆 张志伟 吴益敏 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期348-353,共6页
A new method was worked out to improve the precision of springback prediction in sheet metal forming by combining the finite element method (FEM) with the data mining (DM) technique. First the genetic algorithm (GA) w... A new method was worked out to improve the precision of springback prediction in sheet metal forming by combining the finite element method (FEM) with the data mining (DM) technique. First the genetic algorithm (GA) was adopted for recognizing the material parameters. Then according to the even design idea, the suitable calculation scheme was confirmed, and FEM was used for calculating the springback. The computation results were compared with experiment data, the difference between them was taken as source data, and a new pattern recognition method of DM called hierarchical optimal map recognition method (HOMR) is applied for summarizing the calculation regulation in FEM. At the end, the mathematics model of the springback simulation was established. Based on the model, the calculation errors of springback can be controlled within 10% compared with the experimental results. 展开更多
关键词 springback prediction pattern recognition genetic algorithm FEM even design idea HOMR data mining.
下载PDF
Springback of I-Section Beam after Pure Bending with von Mises Criteria
15
作者 Reham Saleh Gamal Ali Abla El-Megharbel 《World Journal of Engineering and Technology》 2018年第1期104-118,共15页
The objective of the present paper is to introduce a theoretical analysis of bending I-sections after pure bending. The springback values are determined to provide a quantitative method for predicting the springback u... The objective of the present paper is to introduce a theoretical analysis of bending I-sections after pure bending. The springback values are determined to provide a quantitative method for predicting the springback using von Mises criteria. The analytical methods for the I-section are given for two cases according to the positions of the yield point along the height of the beam. The controlling parameters on the springback of I-sections are studied. The results obtained are quite successful for the prediction of springback for bending I-sections. 展开更多
关键词 BENDING SECTIONS BEAM springback von MISES
下载PDF
Experimental Study on Springback of Sheet Metal Single Point Incremental Forming
16
作者 LIANG Ying GAO Lin WEI Hong-yu LU Ren-wei 《International Journal of Plant Engineering and Management》 2011年第1期60-64,共5页
Sheet metal single point incremental forming (SPIF) is a new technology for flexible process. The springback phenomenon in single point incremental forming has been discussed. Effects of forming angle and shape of t... Sheet metal single point incremental forming (SPIF) is a new technology for flexible process. The springback phenomenon in single point incremental forming has been discussed. Effects of forming angle and shape of the part are analysed using simple experimental method. Tool diameter, sheet thickness, step size, material parameters and the interaction of them are also analysed by using orthogonal test. The results show that the primary factor af- fecting springback is forming angle. In addition, springback is decreased when the specimen has a larger forming angle. The order of the four factors that influence springback is tool diameter, sheet thickness, step size and material parameters. The forming precision will increase if springabck is decreased by optimizing the forming parameters. 展开更多
关键词 incremental forming springback orthogonal test forming parameters
下载PDF
Optimization on springback reduction in cold stretch forming of titanium-alloy aircraft skin 被引量:4
17
作者 何德华 李东升 +1 位作者 李小强 金朝海 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2350-2357,共8页
An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress dif... An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress difference was developed as an indicator of the degree of springback instead of implicit springback analysis.Explicit finite element method(FEM)was used to analyze the forming process and to provide the stress distribution for calculating the amount of the stress indicator.In addition,multi-island genetic algorithm(MGA)was employed to seek the optimal loading condition.A case study was performed to demonstrate the potential of the suggested method.The results show that the optimization design of process parameters effectively reduces the amount of springback and improves the part shape accuracy.It provides a guideline for controlling springback in stretch forming of aircraft skin. 展开更多
关键词 成型工艺参数 回弹分析 优化模型 飞机蒙皮 钛合金 冷拉伸 显式有限元法 参数优化设计
下载PDF
An analytical model for predicting sheet springback after V-bending 被引量:8
18
作者 ZHANG Dong-juan CUI Zhen-shan CHEN Zhi-ying RUAN Xue-yu 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第2期237-244,共8页
Springback is caused by the redistribution of stress in sheet material after the tooling is removed. Precise prediction of sheet springback is very important in die design. Based on Hill’s yielding criterion and plan... Springback is caused by the redistribution of stress in sheet material after the tooling is removed. Precise prediction of sheet springback is very important in die design. Based on Hill’s yielding criterion and plane strain condition, an analytical model is proposed in this paper which takes into account the effects of contact pressure, the length of bending arm between the punch and die, transverse stress, neutral surface shifting and sheet thickness thinning on the sheet springback of V-bending. The predicted results by this analytical model indicated that the contact pressure and transverse stress have much effect on the springback when the bending ratio (the ratio of punch radius to sheet thickness) is less than five. The contact pressure declined when the length of bending arm goes up, which means that shorter length of bending arm will result in larger springback. The effect of neutral surface shifting on the springback is less than that of contact pressure and decreases with the bending ratio. However, this research showed that the influence of thickness thinning on the springback can be ignored. Comparison with finite element method (FEM) simu-lating results shows that the predicted results by the analytical model accord well with simulation results by FEM. In addition to that, the bending ability—the limit bending ratio for a given sheet thickness and material properties was also determined. 展开更多
关键词 回弹 弯曲 有限元分析 冷冲压工艺
下载PDF
Springback of thin-walled tube NC precision bending and its numerical simulation 被引量:4
19
作者 谷瑞杰 杨合 +1 位作者 詹梅 李恒 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期631-638,共8页
The springback is one of the key factors which affect the forming quality of thin-walled tube NC precision bending. The elastic-plastic finite element method was proposed to study the springback process of thin-walled... The springback is one of the key factors which affect the forming quality of thin-walled tube NC precision bending. The elastic-plastic finite element method was proposed to study the springback process of thin-walled tube NC precision bending and the combination of dynamic explicit algorithm and the static implicit algorithm was proposed to solve the whole process of thin-walled tube NC precision bending. Then, the 3D elastic-plastic finite element model was established based on the DYNAFORM platform, and the model was verified to be reasonable. At last, the springback rule of thin-walled tube NC precision bending and the effect of geometry and material parameters on the springback rule of thin-walled tube NC precision bending were studied, which is useful to controlling the springback of thin-walled tube NC precision bending, and the numerical simulation method can be used to study other effect of parameters on the forming quality of thin-walled tube NC precision bending. 展开更多
关键词 薄壁管 NC精密弯曲 回弹 精密加工 数值模拟 三维弹塑性FEM模型
下载PDF
INVESTIGATION INTO THE SPRINGBACK OF PIPE BENDING USING INDUCTION HEATING
20
作者 Hu, Zhong Xia, Fuqing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1998年第1期55-62,69,共8页
Stresses and deformation states of pipe bending are investigated under loading or unloading with various pipe materials, size, bending radius and deformation temperature. A theorem of springback of large diameter pipe... Stresses and deformation states of pipe bending are investigated under loading or unloading with various pipe materials, size, bending radius and deformation temperature. A theorem of springback of large diameter pipe bending is presented. The experiments are carried out with pipe materials of 20, 10CrMo910 and 12Cr1MoV steel. Results of computations are in good agreement with experiments. 展开更多
关键词 Pipe bending springback Induction heating Theory of plasticity Metal forming
全文增补中
上一页 1 2 84 下一页 到第
使用帮助 返回顶部