期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Elastodynamic modeling and joint reaction prediction for 3-PRS PKM 被引量:3
1
作者 张俊 赵艳芹 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第8期2971-2979,共9页
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a... To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications. 展开更多
关键词 反应过程 弹性变形 动力学建模 并联机床 关节 预测 动力学模型 准静态方程
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部