Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(an...Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.展开更多
This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations in...This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.展开更多
A norm of a quaternion matrix is defined. The expressions of the least square solutions of the quaternion matrix equation AX = B and the equation with the constraint condition DX = E are given.
In this paper, least-squaxes mirrorsymmetric solution for matrix equations (AX = B, XC = D) and its optimal approximation is considered. With special expression of mirrorsymmetric matrices, a general representation of...In this paper, least-squaxes mirrorsymmetric solution for matrix equations (AX = B, XC = D) and its optimal approximation is considered. With special expression of mirrorsymmetric matrices, a general representation of solution for the least-squares problem is obtained. In addition, the optimal approximate solution and some algorithms to obtain the optimal approximation are provided.展开更多
We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2...The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.展开更多
In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations betwee...In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations between two linear subspaces are topological isomorphism, and we derive the general solutions of least squares problem. With the invariance of the Frobenius norm under orthogonal transformations, we obtain the unique solution of optimal approximation problem. In addition, we present an algorithm and numerical experiment to obtain the optimal approximation solution.展开更多
The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups w...The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.展开更多
For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admit...For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.展开更多
A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular val...A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.展开更多
Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the correspon...Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.展开更多
We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even...We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even number, we could find some numbers which would not be the value of any <em>φ</em>(<em>n</em>). The Sum of two odd numbers is one even number. Gold Bach stated “Every even integer greater than 2 can be written as the sum of two primes”. Other than two, all prime numbers are odd numbers. So we can write, every even integer greater than 2 as the sum of two primes. German mathematician Simon Jacob (d. 1564) noted that consecutive Fibonacci numbers converge to the golden ratio. We could find the series which is generated by one and inverse the golden ratio. Also we can note consecutive golden ratio numbers converge to the golden ratio. Lothar Collatz stated integers converge to one. It is also known as 3k + 1 problem. Tao redefined Collatz conjecture as 3k <span style="white-space:nowrap;">−</span> 1 problem. We could not prove it directly but one parallel proof will prove this conjecture.展开更多
Let be a given Hermitian matrix satisfying . Using the eigenvalue decomposition of , we consider the least squares solutions to the matrix equation , with the constraint .
Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research exten...Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.展开更多
In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expr...In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expression of the minimum norm solution of MSTLS problem with multiple right-hand sides. Then, we present the Kronecker-product-based formulae for the normwise, mixed and componentwise condition numbers of the MSTLS problem. For easy estimation, we also exhibit Kronecker-product-free upper bounds for these condition numbers. All these results can reduce to those of the total least squares (TLS) problem which were given by Zheng <em>et al</em>. Finally, two numerical experiments are performed to illustrate our results.展开更多
We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute t...We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.展开更多
The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are establi...The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics...Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.展开更多
The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysi...The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.展开更多
基金Supported by the Education Department Foundation of Hebei Province(Grant No.QN2015218).
文摘Let P∈C^(m×m)and Q∈C^(n×n)be Hermitian and{k+1}-potent matrices,i.e.,P k+1=P=P∗,Qk+1=Q=Q∗,where(·)∗stands for the conjugate transpose of a matrix.A matrix X∈C m×n is called{P,Q,k+1}-reflexive(anti-reflexive)if P XQ=X(P XQ=−X).In this paper,the least squares solution of the matrix equation AXB=C subject to{P,Q,k+1}-reflexive and anti-reflexive constraints are studied by converting into two simpler cases:k=1 and k=2.
基金Supported by the NSF of Hubei Province(2022CFD042)。
文摘This paper proposes a method combining blue the Haar wavelet and the least square to solve the multi-dimensional stochastic Ito-Volterra integral equation.This approach is to transform stochastic integral equations into a system of algebraic equations.Meanwhile,the error analysis is proven.Finally,the effectiveness of the approach is verified by two numerical examples.
文摘A norm of a quaternion matrix is defined. The expressions of the least square solutions of the quaternion matrix equation AX = B and the equation with the constraint condition DX = E are given.
基金supported by National Natural Science Foundation of China(1057,1047).
文摘In this paper, least-squaxes mirrorsymmetric solution for matrix equations (AX = B, XC = D) and its optimal approximation is considered. With special expression of mirrorsymmetric matrices, a general representation of solution for the least-squares problem is obtained. In addition, the optimal approximate solution and some algorithms to obtain the optimal approximation are provided.
基金the NSF of China under grant 10471027 and Shanghai Education Commission.
文摘We present componentwise condition numbers for the problems of MoorePenrose generalized matrix inversion and linear least squares. Also, the condition numbers for these condition numbers are given.
基金supported in part by the Social Science Foundation of Ministry of Education(07JJD790154)the National Science Foundation for Young Scholars (60803076)+2 种基金the Natural Science Foundation of Zhejiang Province (Y6090211)Foundation of Education Department of Zhejiang Province (20070590)the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.
文摘In this paper, we discuss least squares symmetrizable solutions of matrix equations (AX = B, XC = D) and its optimal approximation solution. With the matrix row stacking, Kronecker product and special relations between two linear subspaces are topological isomorphism, and we derive the general solutions of least squares problem. With the invariance of the Frobenius norm under orthogonal transformations, we obtain the unique solution of optimal approximation problem. In addition, we present an algorithm and numerical experiment to obtain the optimal approximation solution.
基金Supported by the National Natural Science Foundation of China(Nos.41376106,41176063)the Shandong Provincial Natural Science Foundation of China(No.ZR2013DM017)
文摘The feasibility of using fluorescence excitation-emission matrix(EEM) along with parallel factor analysis(PARAFAC) and nonnegative least squares(NNLS) method for the differentiation of phytoplankton taxonomic groups was investigated. Forty-one phytoplankton species belonging to 28 genera of five divisions were studied. First, the PARAFAC model was applied to EEMs, and 15 fluorescence components were generated. Second, 15 fluorescence components were found to have a strong discriminating capability based on Bayesian discriminant analysis(BDA). Third, all spectra of the fluorescence component compositions for the 41 phytoplankton species were spectrographically sorted into 61 reference spectra using hierarchical cluster analysis(HCA), and then, the reference spectra were used to establish a database. Finally, the phytoplankton taxonomic groups was differentiated by the reference spectra database using the NNLS method. The five phytoplankton groups were differentiated with the correct discrimination ratios(CDRs) of 100% for single-species samples at the division level. The CDRs for the mixtures were above 91% for the dominant phytoplankton species and above 73% for the subdominant phytoplankton species. Sixteen of the 85 field samples collected from the Changjiang River estuary were analyzed by both HPLC-CHEMTAX and the fluorometric technique developed. The results of both methods reveal that Bacillariophyta was the dominant algal group in these 16 samples and that the subdominant algal groups comprised Dinophyta, Chlorophyta and Cryptophyta. The differentiation results by the fluorometric technique were in good agreement with those from HPLC-CHEMTAX. The results indicate that the fluorometric technique could differentiate algal taxonomic groups accurately at the division level.
文摘For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.
文摘A real n×n symmetric matrix X=(x_(ij))_(n×n)is called a bisymmetric matrix if x_(ij)=x_(n+1-j,n+1-i).Based on the projection theorem,the canonical correlation de- composition and the generalized singular value decomposition,a method useful for finding the least-squares solutions of the matrix equation A^TXA=B over bisymmetric matrices is proposed.The expression of the least-squares solutions is given.Moreover, in the corresponding solution set,the optimal approximate solution to a given matrix is also derived.A numerical algorithm for finding the optimal approximate solution is also described.
基金The Project of Shaanxi Provincial Natural Science Foundation of China (No.2004A05)the Project of Science and Research Foundation of Education Committee of Shaanxi Province (No.06JK324)
文摘Based on the concept of multiplicative fuzzy consistent complementary judgement matrix, the mixed least square method (MLSM) for priority of complementary judgement matrix is proposed and proved. Then, the corresponding convergent iterative algorithm is given and its convergence is proved. Finally, some main properties of the developed priority method, such as rank preservation under strong condition, etc., ate introduced. The theoretical analyses show that the MLSM can sufficiently reflect the preference information of the decision maker, and is easy to realize on a computer.
文摘We know Pascal’s triangle and planer graphs. They are mutually connected with each other. For any positive integer n, <em>φ</em>(<em>n</em>) is an even number. But it is not true for all even number, we could find some numbers which would not be the value of any <em>φ</em>(<em>n</em>). The Sum of two odd numbers is one even number. Gold Bach stated “Every even integer greater than 2 can be written as the sum of two primes”. Other than two, all prime numbers are odd numbers. So we can write, every even integer greater than 2 as the sum of two primes. German mathematician Simon Jacob (d. 1564) noted that consecutive Fibonacci numbers converge to the golden ratio. We could find the series which is generated by one and inverse the golden ratio. Also we can note consecutive golden ratio numbers converge to the golden ratio. Lothar Collatz stated integers converge to one. It is also known as 3k + 1 problem. Tao redefined Collatz conjecture as 3k <span style="white-space:nowrap;">−</span> 1 problem. We could not prove it directly but one parallel proof will prove this conjecture.
文摘Let be a given Hermitian matrix satisfying . Using the eigenvalue decomposition of , we consider the least squares solutions to the matrix equation , with the constraint .
文摘Necessary and sufficient conditions are derived for some matrix equations that have a common least-squares solution.A general expression is provided when certain resolvable conditions are satisfied.This research extends existing work in the literature.
文摘In this paper, we extend matrix scaled total least squares (MSTLS) problem with a single right-hand side to the case of multiple right-hand sides. Firstly, under some mild conditions, this paper gives an explicit expression of the minimum norm solution of MSTLS problem with multiple right-hand sides. Then, we present the Kronecker-product-based formulae for the normwise, mixed and componentwise condition numbers of the MSTLS problem. For easy estimation, we also exhibit Kronecker-product-free upper bounds for these condition numbers. All these results can reduce to those of the total least squares (TLS) problem which were given by Zheng <em>et al</em>. Finally, two numerical experiments are performed to illustrate our results.
文摘We present a numerical method for solving the indefinite least squares problem. We first normalize the coefficient matrix. Then we compute the hyperbolic QR factorization of the normalized matrix. Finally we compute the solution by solving several triangular systems. We give the first order error analysis to show that the method is backward stable. The method is more efficient than the backward stable method proposed by Chandrasekaran, Gu and Sayed.
文摘The constructional methods of pandiagonal snowflake magic squares of orders 4m are established in paper [3]. In this paper, the constructional methods of pandiagonal snowflake magic squares of odd orders n are established with n = 6m+l, 6m+5 and 6m+3, m is an odd positive integer and m is an even positive integer 9|6m + 3. It is seen that the number sets for constructing pandiagonal snowflake magic squares can be extended to the matrices with symmetric partial difference in each direction for orders 6m + 1 , 6m + 5; to the trisection matrices with symmetric partial difference in each direction for order 6m + 3.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
基金supported by Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province(Changsha University of Science&Technology,kfj150602)Hunan Province Science and Technology Program Funded Projects,China(2015NK3035)+1 种基金the Land and Resources Department Scientific Research Project of Hunan Province,China(2013-27)the Education Department Scientific Research Project of Hunan Province,China(13C1011)
文摘Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy.
文摘The Laser Induced Breakdown Spectroscopy (LIBS) is a fast, non-contact, no sample preparation analytic technology;it is very suitable for on-line analysis of alloy composition. In the copper smelting industry, analysis and control of the copper alloy concentration affect the quality of the products greatly, so LIBS is an efficient quantitative analysis tech- nology in the copper smelting industry. But for the lead brass, the components of Pb, Al and Ni elements are very low and the atomic emission lines are easily submerged under copper complex characteristic spectral lines because of the matrix effects. So it is difficult to get the online quantitative result of these important elements. In this paper, both the partial least squares (PLS) method and the calibration curve (CC) method are used to quantitatively analyze the laser induced breakdown spectroscopy data which is obtained from the standard lead brass alloy samples. Both the major and trace elements were quantitatively analyzed. By comparing the two results of the different calibration method, some useful results were obtained: both for major and trace elements, the PLS method was better than the CC method in quantitative analysis. And the regression coefficient of PLS method is compared with the original spectral data with background interference to explain the advantage of the PLS method in the LIBS quantitative analysis. Results proved that the PLS method used in laser induced breakdown spectroscopy was suitable for simultaneous quantitative analysis of different content elements in copper smelting industry.