The electrochemical behaviour and electrode reaction mechanism of ziram (zinc-dimethyl dithiocarbamate) on a hanging mercury drop electrode were investigated in Britton-Robinson (B-R) buffer by using cyclic and sq...The electrochemical behaviour and electrode reaction mechanism of ziram (zinc-dimethyl dithiocarbamate) on a hanging mercury drop electrode were investigated in Britton-Robinson (B-R) buffer by using cyclic and square wave voltammetry (SWV). Based on these studies a voltammetric method for determination of ziram wasdeveloped and applied to determine the ziram in synthetic and spiked vegetable samples, satisfactory results were obtained in both cases.展开更多
A method for determination of lactose in food samples by Osteryoung square wave voltammetry (OSWV) was developed. It was based on the nucleophilic addition reaction between lactose and aqua ammonia. The carbonyl gro...A method for determination of lactose in food samples by Osteryoung square wave voltammetry (OSWV) was developed. It was based on the nucleophilic addition reaction between lactose and aqua ammonia. The carbonyl group of lactose can be changed into imido group, and this increases the electrochemical activity in reduction and the sensitivity. The optimal condition for the nucleophilic addition reaction was investigated and it was found that in NH4C1-NH3 buffer of pH 10.1, the linear range between the peak current and the concentration of lactose was 0.6-8.4 mg L-l, and the detection limits was 0.44 mg L- 1. The proposed method was applied to the 'determination of lactose in food samples and satisfactory results were obtained.展开更多
Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a n...Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.展开更多
In this research, copper oxide nanoparticles modified carbon paste electrode was developed for the voltammetric determination of lidocaine. The square wave voltammogram of lidocaine solution showed a well-defined peak...In this research, copper oxide nanoparticles modified carbon paste electrode was developed for the voltammetric determination of lidocaine. The square wave voltammogram of lidocaine solution showed a well-defined peak between +0.5 and +1.5 V. Instrumental and chemical parameters influencing voltammetric response were optimized by both one at a time and Box–Behnken model of response surface methodology. The results revealed that there was no significant difference between two methods of optimization. The linear range was 1–2500 μmol L^-1(Ip= 0.11 C(LH)+ 17.38, R^2= 0.999). The LOD and LOQ based on three and ten times of the signal to noise(S/N) were 0.39 and 1.3 μmol L^-1(n = 10),respectively. The precision of the method was assessed for 10 replicate square wave voltammetry(SWV)determinations each of 0.05, 0.5 and 1 μmol L^-1 of lidocaine showing relative standard deviations 4.1%,3.7% and 2.1%, respectively. The reliability of the proposed method was established by application of the method for the determination of lidocaine in two pharmaceutical preparations, namely injection and gel.展开更多
The cathodic process of cerium(III) ions in NaCl-2CsCl melt was studied bycyclic voltammetry and square wave voltammetry with tungsten and gold electrodes at 873 K. The twoelectroanalytical methods yield similar resul...The cathodic process of cerium(III) ions in NaCl-2CsCl melt was studied bycyclic voltammetry and square wave voltammetry with tungsten and gold electrodes at 873 K. The twoelectroanalytical methods yield similar results. The cathodic process of cerium(III) ions consistsof two reversible steps: Ce^(3+)+ e^-= Ce^(2+) and Ce^(2+) + 2e^-= Ce. The half wave potentials ofCe^(3+)/Ce^(2+) and Ce^(2+)/Ce were determined as -2.525 V vs. Cl_2/Cl^- and -2.975 V vs. Cl_2/Cl^-,respectively. The diffusion coefficient of Ce^(3+) was also determined as 5.5 X 10^(-5) cm^2 centredot s^(-1).展开更多
Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with hi...Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with high sensitivity and selectivity.A square wave voltammetric method was developed for the assessment of organophosphorus(OPs) compound impact on acetylcholinesterase(AChE) of Pheretima with 2,6-dimethyl-p-benzoquinone(2,6DMBQ) as a redox indicator.The substrate of acetylthiocholine is hydrolyzed by AChE and the produced thiocholine reacts with 2,6-DMBQ to give an obvious shift of electrochemical signal.The reduction peak of 2,6-DMBQ is located at around 0.18 V which is far away from the oxidation potential of possible interference components often present in biosample.The decreased rate of reduction current was related with the activity of AChE.The inhibition of parathion-methyl on AChE was assessed.The inhibiton rate of OPs on AChE activity increased quickly during the first 10 min inhibition,and after that the value of inhibition rate approached to be constant.AChE lost almost 29.3% of activity after 10 min incubation with 1 μg/mL parathion-methyl and 67.5% of activity with 10 μg/mL parathion-methyl,while the activity that corresponds to 40 μg/mL parathion-methyl was nearly completely inhibited(94.9%).Compared to cyclic voltammetry and amperometry,Square wave voltammetry(SWV) method is a high sensitive electroanalysis with fast scan-rate(only several seconds for one signal value) which is useful to prevent the electrodes from possible fouling or passivation.This method can be employed to assess the inhibition of organophosphate on AChE and investigate OPs impact on environmental animals.展开更多
The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogene...The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design.展开更多
In this work,carbon nanosheet(CNS) based electrode was designed for electrochemical biosensing of glucose.CNS has been obtained by the pyrolysis of barley at 600-750℃ in a muffle furnace:it was then purified and f...In this work,carbon nanosheet(CNS) based electrode was designed for electrochemical biosensing of glucose.CNS has been obtained by the pyrolysis of barley at 600-750℃ in a muffle furnace:it was then purified and functionalized.The CNS has been characterized by scanning electron microscopy(SEM).X-ray diffraction(XRD) and Raman spectroscopic techniques.The electrochemical activity of CNS-based electrode was investigated by linear sweep vollammetry(LSV) and square wave voltammetry(SWV),for the oxidation of glucose in 0.001 M H2SO4(pH 6.0).The linear range of the sensor was found to be 10-4-10-6M(1-100 μM) within the response time of 4 s.Interestingly,its sensitivity reached as high as 26.002±0.01 μA/μM cm2.Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors.展开更多
Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium ...Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.展开更多
Electrochemical determination of paracetamol(PCT)was successfully performed using carbon paste electrodes(CPEs)modified with treated coffee husks(CHt)or cellulose powder(Ce).Scanning electron microscopy was used to ch...Electrochemical determination of paracetamol(PCT)was successfully performed using carbon paste electrodes(CPEs)modified with treated coffee husks(CHt)or cellulose powder(Ce).Scanning electron microscopy was used to characterize unmodified or modified CPEs prior to their use.The electrochemical oxidation of PCT was investigated using square wave voltammetry(SWV)and cyclic voltammetry(CV).The oxidation current density of PCT was two-fold higher with the CPE-CHt sensor and 30%higher with CPE-Ce in comparison with the unmodified CPE,and this correlated with the higher hydrophilicity of the modified electrodes.Using SWV for the electrochemical analysis of PCT,carbon paste electrode modified with raw coffee husks(CPE-CHr)showed the presence of impurities at+0.27 V/SCE,showing the interest in using pure cellulose for the present analytical application.Furthermore,CPE-Ce presented a higher real area compared to CPE-CHr,which explains the increase in the limit of saturation from 400 mg/L to 950 mg/L.The better saturation limit exhibited by CPE-Ce justifies its choice for electroanalysis of PCT in commercialized tablets.The proposed method was successfully applied in the determination of PCT in commercialized tablets(DolipraneR 500)with a recovery rate close to 100%,and no interference with the excipients contained in the tablets analyzed was observed.This novel sensor opens the way for sustainable development of electroanalytical control of drugs sold individually in developing countries.展开更多
A simple electrochemical sensor for dopamine detection, is based on molecularly imprinted and electropolymerized over-oxidized polypyrrole (OPPy). The MIP-based electrode is obtained by electrocopolymerization of pyrr...A simple electrochemical sensor for dopamine detection, is based on molecularly imprinted and electropolymerized over-oxidized polypyrrole (OPPy). The MIP-based electrode is obtained by electrocopolymerization of pyrrole (0.1 M) in the presence of the template molecular (dopamine, DA) (10<sup>-3</sup> M). The square wave voltammetry (SWV) is used for the detection of dopamine in buffer solution. The current peak obtained at the MIP electrode was proportional to the logarithm of the DA concentration in the range of 10<sup>-11</sup> to 5 × 10<sup>-8</sup> M with a detection limit of 10<sup>-11</sup> M. The proposed sensor was used for the detection of DA in spiked blood serum, satisfactory results were obtained.展开更多
The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was s...The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.展开更多
The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is d...The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.展开更多
The use of electrochemical sensors for sensitive disease diagnosis and detecting various species with pharmacological,therapeutic,industrial,food-related,and environmental origins is now widely accepted.A catalytic or...The use of electrochemical sensors for sensitive disease diagnosis and detecting various species with pharmacological,therapeutic,industrial,food-related,and environmental origins is now widely accepted.A catalytic or binding event resulting from the sensor’s electroactive component recognizing its analyte creates an electrical signal proportionate to the analyte concentration,which is then monitored by a transducer.The development of morphologically distinct metal and metal oxide nanoparticles formed from first-row transition elements(Mn,Cr,Fe,Co,Ti,Ni,Cu,Zn)and noble metals(Pt,Au,Ag,Pd)is described in this review.The effect of these metal nanoparticles has been studied using Tetracyanoquinodimethane(TCNQ),Ferrocene,and other organic compounds as electroactive species using carbon paste-modified electrodes.Electroanalytical sensors,mostly based on ferrocene,are exceedingly sensitive,selective,affordable,and for detecting numerous biomolecules like glucose,dopamine,NADH,ascorbic acid,and a few dyes and are simple to build.In recent decades,charge transfer organic species-based chemosensors have become a prominent study area.This paper outlines current developments in electrochemical biosensors based on transition metal nanoparticles,covering glucose,ascorbic acid,uric acid,and other inorganic and organic analytes.The importance of transition metal and transition metal oxide nanoparticles as potential electrode modifiers for developing sensors is highlighted.A discussion of the present problem and possible solutions,and plausible future directions marks the review’s conclusion.展开更多
Voltammetry measurements have been employed to investigate the redox behaviour of curcumin in aqueous media using functionalized carbon nanotube(FCNTs)modified glassy carbon electrode(GCE).The electro-catalytic proper...Voltammetry measurements have been employed to investigate the redox behaviour of curcumin in aqueous media using functionalized carbon nanotube(FCNTs)modified glassy carbon electrode(GCE).The electro-catalytic properties of FCNTs modified electrode are superior in comparison to the conventional electrode in generating the electrochemical response from curcumin.The oxidation process of the curcumin over the modified substrate is found to be p H dependent and shows 2e^(-)and 2H^(+)proton transfer electrochemical process.The oxidation peak is obtained at 0.37 V and the peak current is found to be linear with the varying concentration of curcumin.The limit of detection(LOD)and the limit of quantification(LOQ)for the curcumin are obtained as 60 and 200 nmol/L,respectively using the FCNTs modified GCE.The enhanced electrochemical response from the FCNTs modified GCE has been utilized in the evaluation of the chemical and biochemical behaviour of curcumin in presence of transition metal ions(Cu^(2+))and ds DNA,and the observation has been supported by the spectrochemical characteristics of the interactions.展开更多
Phenylacetic acid(PAA)is a primary raw material for illegal Methamphetamine(MATM)synthesis under the strong precursor chemicals supervisions of safrole and isosafrole.Therefore,trace detection of PAA at ultra-low conc...Phenylacetic acid(PAA)is a primary raw material for illegal Methamphetamine(MATM)synthesis under the strong precursor chemicals supervisions of safrole and isosafrole.Therefore,trace detection of PAA at ultra-low concentration is a strategic technique and an urgent issue in the field of drug control.In this paper,trace determination of PAA at sub-nmol-L-1 concentration level is achieved by hydrogen bond adsorption and electrochemical catalysis through the prepared aminated SiO_(2)nanoparticles(SiO_(2)-NH_(2) NPs)and MoS_(2) nanosheets(NSs)modified glassy carbon electrode(GCE).The prepared MoS_(2) NS s/SiO_(2)-NH_(2) NPs modified electrode represents a detecting limit of 0.0989 nmol·L^(-1)and an obvious increasing linear range before the concentration increasement up to 60 nmol·L^(-1)in square wave voltammetry(SWV)responses of PAA.The SWV response of the modified electrode to PAA in the concentration range within 100 nmol·L^(-1)is higher than phenol,acetic acid(HOAc)and benzoic Acid(BEN).This electrochemical method for trace detection of PAA in aqueous solution with desired performance provides a feasible scheme for the detection of other drugs and aromatic precursor chemicals.展开更多
We present a portable non-invasive approach for measuring indicators of inflammation and oxidative stress in the respiratory tract by quantifying a biomarker in exhaled breath condensate(EBC).We discuss the fabricatio...We present a portable non-invasive approach for measuring indicators of inflammation and oxidative stress in the respiratory tract by quantifying a biomarker in exhaled breath condensate(EBC).We discuss the fabrication and characterization of a miniaturized electrochemical sensor for detecting nitrite content in EBC using reduced graphene oxide.The nitrite content in EBC has been demonstrated to be a promising biomarker of inflammation in the respiratory tract,particularly in asthma.We utilized the unique properties of reduced graphene oxide(rGO);specifically,the material is resilient to corrosion while exhibiting rapid electron transfer with electrolytes,thus allowing for highly sensitive electrochemical detection with minimal fouling.Our rGO sensor was housed in an electrochemical cell fabricated from polydimethyl siloxane(PDMS),which was necessary to analyze small EBC sample volumes.The sensor is capable of detecting nitrite at a low over-potential of 0.7 V with respect to an Ag/AgCl reference electrode.We characterized the performance of the sensors using standard nitrite/buffer solutions,nitrite spiked into EBC,and clinical EBC samples.The sensor demonstrated a sensitivity of 0.21μAμM^(−1) cm^(−2) in the range of 20–100μM and of 0.1μAμM^(−1) cm^(−2) in the range of 100–1000μM nitrite concentration and exhibited a low detection limit of 830 nM in the EBC matrix.To benchmark our platform,we tested our sensors using seven pre-characterized clinical EBC samples with concentrations ranging between 0.14 and 6.5μM.This enzyme-free and label-free method of detecting biomarkers in EBC can pave the way for the development of portable breath analyzers for diagnosing and managing changes in respiratory inflammation and disease.展开更多
The electrochemical reduction mechanism of hafnium ion(IV) was studied in NaC1-KC1-K2HfC16 melts on a molybdenum electrode. The cyclic voltammetry study shows that Hf(IV) is reduced to hafnium metal in double two-...The electrochemical reduction mechanism of hafnium ion(IV) was studied in NaC1-KC1-K2HfC16 melts on a molybdenum electrode. The cyclic voltammetry study shows that Hf(IV) is reduced to hafnium metal in double two-electron process, that is: Hf(IV) + 2e→Hf(II) and Hf(II) + 2e- →Hf, and the electrochemical reduction of Hf(IV) pro- cess was diffusion-controlled. The diffusion coefficients were calculated at several temperatures, and the results obey the Arrhenius law. According to the relationship oflnD versus 1/T, the corresponding activation energy was determined to be 158.8 kJ.mol- x. The square wave voltammetry results further confirm the reduction mechanism of hafnium.展开更多
An ultrasensitive electrochemical aptasensor is presented for prostate specific antigen(PSA) detection. DNA tetrahedronaptamer is designed, which not only facilitates the molecular self-assembly events,but also improv...An ultrasensitive electrochemical aptasensor is presented for prostate specific antigen(PSA) detection. DNA tetrahedronaptamer is designed, which not only facilitates the molecular self-assembly events,but also improves the recognition efficiency between PSA and aptamer sequence on the electrode interface. The DNA conformation on top of DNA tetrahedron changes accordingly, which can be further digested by Exonuclease T(Exo T), a type of single-strand specific nuclease. Electrochemical species are removed synchronously and the initial PSA level can thus be determined. A linear range from 0.5 pg mL^(-1) to50 ng mL^(-1) is achieved with the limit of detection(LOD) as low as 0.15 pg mL^(-1). Moreover, this proposed method is highly selective and is successfully applied to determine PSA in human serum samples.展开更多
基金the financial support of this study by the National Natural Science Foundation of China (No.20562009)the Jiangxi Province Natural Science Foundation (No.0620041)+1 种基金the State Key Laboratories of Electroanalytical Chemistry of Changchun Applied Chemical Institute (No.SKLEAC2004-3)Chemo/Biosensing and Chemometrics of Hunan University (No.2005-22).
文摘The electrochemical behaviour and electrode reaction mechanism of ziram (zinc-dimethyl dithiocarbamate) on a hanging mercury drop electrode were investigated in Britton-Robinson (B-R) buffer by using cyclic and square wave voltammetry (SWV). Based on these studies a voltammetric method for determination of ziram wasdeveloped and applied to determine the ziram in synthetic and spiked vegetable samples, satisfactory results were obtained in both cases.
基金supported from the National Natural Science Foundation (No.20562009)the State Key Laboratory of Electroanalytical Chemistry of Changchun Applied Chemical Institute (No.2004-3)+1 种基金the Jiangxi Provincial Natural Science Foundation (No.0620041)the Program for Changjiang Scholar and Innovative Research Team in Universities (No.0540).
文摘A method for determination of lactose in food samples by Osteryoung square wave voltammetry (OSWV) was developed. It was based on the nucleophilic addition reaction between lactose and aqua ammonia. The carbonyl group of lactose can be changed into imido group, and this increases the electrochemical activity in reduction and the sensitivity. The optimal condition for the nucleophilic addition reaction was investigated and it was found that in NH4C1-NH3 buffer of pH 10.1, the linear range between the peak current and the concentration of lactose was 0.6-8.4 mg L-l, and the detection limits was 0.44 mg L- 1. The proposed method was applied to the 'determination of lactose in food samples and satisfactory results were obtained.
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.
基金supported by the National Key Research and Development Project of China(2019YFC1804802)。
文摘Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.
基金funding provided by Jundishapur University of Medical Sciences–Nanotechnology Research Center under grant No.N-11
文摘In this research, copper oxide nanoparticles modified carbon paste electrode was developed for the voltammetric determination of lidocaine. The square wave voltammogram of lidocaine solution showed a well-defined peak between +0.5 and +1.5 V. Instrumental and chemical parameters influencing voltammetric response were optimized by both one at a time and Box–Behnken model of response surface methodology. The results revealed that there was no significant difference between two methods of optimization. The linear range was 1–2500 μmol L^-1(Ip= 0.11 C(LH)+ 17.38, R^2= 0.999). The LOD and LOQ based on three and ten times of the signal to noise(S/N) were 0.39 and 1.3 μmol L^-1(n = 10),respectively. The precision of the method was assessed for 10 replicate square wave voltammetry(SWV)determinations each of 0.05, 0.5 and 1 μmol L^-1 of lidocaine showing relative standard deviations 4.1%,3.7% and 2.1%, respectively. The reliability of the proposed method was established by application of the method for the determination of lidocaine in two pharmaceutical preparations, namely injection and gel.
文摘The cathodic process of cerium(III) ions in NaCl-2CsCl melt was studied bycyclic voltammetry and square wave voltammetry with tungsten and gold electrodes at 873 K. The twoelectroanalytical methods yield similar results. The cathodic process of cerium(III) ions consistsof two reversible steps: Ce^(3+)+ e^-= Ce^(2+) and Ce^(2+) + 2e^-= Ce. The half wave potentials ofCe^(3+)/Ce^(2+) and Ce^(2+)/Ce were determined as -2.525 V vs. Cl_2/Cl^- and -2.975 V vs. Cl_2/Cl^-,respectively. The diffusion coefficient of Ce^(3+) was also determined as 5.5 X 10^(-5) cm^2 centredot s^(-1).
基金Supported by the Natural Science Foundation of Shanxi Province,China(No.20001057)
文摘Electroanalytical techniques could be a reliable and promising alternative to classical and sophisticated methods because of their simplicity(small and portable),easy use,the ability to deliver fast response with high sensitivity and selectivity.A square wave voltammetric method was developed for the assessment of organophosphorus(OPs) compound impact on acetylcholinesterase(AChE) of Pheretima with 2,6-dimethyl-p-benzoquinone(2,6DMBQ) as a redox indicator.The substrate of acetylthiocholine is hydrolyzed by AChE and the produced thiocholine reacts with 2,6-DMBQ to give an obvious shift of electrochemical signal.The reduction peak of 2,6-DMBQ is located at around 0.18 V which is far away from the oxidation potential of possible interference components often present in biosample.The decreased rate of reduction current was related with the activity of AChE.The inhibition of parathion-methyl on AChE was assessed.The inhibiton rate of OPs on AChE activity increased quickly during the first 10 min inhibition,and after that the value of inhibition rate approached to be constant.AChE lost almost 29.3% of activity after 10 min incubation with 1 μg/mL parathion-methyl and 67.5% of activity with 10 μg/mL parathion-methyl,while the activity that corresponds to 40 μg/mL parathion-methyl was nearly completely inhibited(94.9%).Compared to cyclic voltammetry and amperometry,Square wave voltammetry(SWV) method is a high sensitive electroanalysis with fast scan-rate(only several seconds for one signal value) which is useful to prevent the electrodes from possible fouling or passivation.This method can be employed to assess the inhibition of organophosphate on AChE and investigate OPs impact on environmental animals.
基金the support of National Natural Science Foundation of China, China (Grant No. 22005010)Beijing Municipal Education Commission Research Project (KM202010005012)
文摘The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design.
基金AICTE,New Delhi,for the financial support and NEHU,Shillong,for characterizations
文摘In this work,carbon nanosheet(CNS) based electrode was designed for electrochemical biosensing of glucose.CNS has been obtained by the pyrolysis of barley at 600-750℃ in a muffle furnace:it was then purified and functionalized.The CNS has been characterized by scanning electron microscopy(SEM).X-ray diffraction(XRD) and Raman spectroscopic techniques.The electrochemical activity of CNS-based electrode was investigated by linear sweep vollammetry(LSV) and square wave voltammetry(SWV),for the oxidation of glucose in 0.001 M H2SO4(pH 6.0).The linear range of the sensor was found to be 10-4-10-6M(1-100 μM) within the response time of 4 s.Interestingly,its sensitivity reached as high as 26.002±0.01 μA/μM cm2.Electrochemical experiments revealed that the proposed electrode offered an excellent electrochemical activity towards the oxidation of glucose and could be applied for the construction of non-enzymatic glucose biosensors.
基金Project supported by the National Natural Science Foundation of China.
文摘Electroactive self-assembled monolayers (SAMs) containing viologen group are formed through the adsorption of thiol-functionalized viologen compound CH3(CH2)(9)V2+(CH2)(8)SH, where V2+ is N,N'-dialkylbipyridinium (i.e. a viologen group), onto gold electrodes from methanol/water solution and its electrochemical behavior is investigated ty Ac voltammetry and square wave voltammetry, which have the high sensitivity against background charging. The viologen SAM formed is a sub-monolayer and the normal potentials corresponding to the two successive one-electron transfer processes of the active centers (viologen) are -360 mV and -750 mV (vs. Ag/AgCl) in 0.1 mol/L phosphate buffer solutions (pH 6.96) respectively, and the standard electron transfer rate constant is 9.0 s(-1). The electrochemical behavior of this SAM in various solutions has been preliminarily discussed.
文摘Electrochemical determination of paracetamol(PCT)was successfully performed using carbon paste electrodes(CPEs)modified with treated coffee husks(CHt)or cellulose powder(Ce).Scanning electron microscopy was used to characterize unmodified or modified CPEs prior to their use.The electrochemical oxidation of PCT was investigated using square wave voltammetry(SWV)and cyclic voltammetry(CV).The oxidation current density of PCT was two-fold higher with the CPE-CHt sensor and 30%higher with CPE-Ce in comparison with the unmodified CPE,and this correlated with the higher hydrophilicity of the modified electrodes.Using SWV for the electrochemical analysis of PCT,carbon paste electrode modified with raw coffee husks(CPE-CHr)showed the presence of impurities at+0.27 V/SCE,showing the interest in using pure cellulose for the present analytical application.Furthermore,CPE-Ce presented a higher real area compared to CPE-CHr,which explains the increase in the limit of saturation from 400 mg/L to 950 mg/L.The better saturation limit exhibited by CPE-Ce justifies its choice for electroanalysis of PCT in commercialized tablets.The proposed method was successfully applied in the determination of PCT in commercialized tablets(DolipraneR 500)with a recovery rate close to 100%,and no interference with the excipients contained in the tablets analyzed was observed.This novel sensor opens the way for sustainable development of electroanalytical control of drugs sold individually in developing countries.
文摘A simple electrochemical sensor for dopamine detection, is based on molecularly imprinted and electropolymerized over-oxidized polypyrrole (OPPy). The MIP-based electrode is obtained by electrocopolymerization of pyrrole (0.1 M) in the presence of the template molecular (dopamine, DA) (10<sup>-3</sup> M). The square wave voltammetry (SWV) is used for the detection of dopamine in buffer solution. The current peak obtained at the MIP electrode was proportional to the logarithm of the DA concentration in the range of 10<sup>-11</sup> to 5 × 10<sup>-8</sup> M with a detection limit of 10<sup>-11</sup> M. The proposed sensor was used for the detection of DA in spiked blood serum, satisfactory results were obtained.
文摘The cyclic voltammetry(CV) and the square wave technique were used for the investigations of thallium(Ⅰ) underpotential deposition(UPD) on the silver electrode. A solution of 10 \{mmol/L\} HClO 4+10 mmol/L NaCl was selected as the supporting electrolyte. The calibration plots for Tl(Ⅰ) concentration in the range of 2×10 -9 -1×10 -7 mol/L were obtained. The detection limit was 5×10 -10 mol/L. For the solutions of 4 0×10 -9 mol/L thallium added before the urine sample pretreatment procedure, the average recovery was 105 6% with a relative standard deviation(RSD) of 15 5%.
文摘The applicability of a gold nanoparticle-modified glassy carbon sensor (AuNPs-GCS) for the determination of inorganic mercury in fresh and canned tuna fish by square wave anodic stripping voltammetry (SW-ASV) is demonstrated. Mercury content in sample Tuna Fish ISPRA T22 was determined to value the accuracy of the determination. The concentration in this sample is not certified, so, the Hg amount was determined also with atomic absorption spectroscopy (AAS): the results obtained with ASV were in good agreement and confirmed literature value reported for this sample. Then, real samples of tuna fish were analyzed. The voltammetric analyses were performed using previously optimized conditions (deposition potential 0 V, step potential 0.004 V, frequency 150 Hz and amplitude 0.003 V). Medium exchange technique permitted to eliminate possible matrix effects. The concentrations in the real samples were found to be in agreement with the common Hg levels reported in literature for commercialized tuna fish in different countries.
文摘The use of electrochemical sensors for sensitive disease diagnosis and detecting various species with pharmacological,therapeutic,industrial,food-related,and environmental origins is now widely accepted.A catalytic or binding event resulting from the sensor’s electroactive component recognizing its analyte creates an electrical signal proportionate to the analyte concentration,which is then monitored by a transducer.The development of morphologically distinct metal and metal oxide nanoparticles formed from first-row transition elements(Mn,Cr,Fe,Co,Ti,Ni,Cu,Zn)and noble metals(Pt,Au,Ag,Pd)is described in this review.The effect of these metal nanoparticles has been studied using Tetracyanoquinodimethane(TCNQ),Ferrocene,and other organic compounds as electroactive species using carbon paste-modified electrodes.Electroanalytical sensors,mostly based on ferrocene,are exceedingly sensitive,selective,affordable,and for detecting numerous biomolecules like glucose,dopamine,NADH,ascorbic acid,and a few dyes and are simple to build.In recent decades,charge transfer organic species-based chemosensors have become a prominent study area.This paper outlines current developments in electrochemical biosensors based on transition metal nanoparticles,covering glucose,ascorbic acid,uric acid,and other inorganic and organic analytes.The importance of transition metal and transition metal oxide nanoparticles as potential electrode modifiers for developing sensors is highlighted.A discussion of the present problem and possible solutions,and plausible future directions marks the review’s conclusion.
文摘Voltammetry measurements have been employed to investigate the redox behaviour of curcumin in aqueous media using functionalized carbon nanotube(FCNTs)modified glassy carbon electrode(GCE).The electro-catalytic properties of FCNTs modified electrode are superior in comparison to the conventional electrode in generating the electrochemical response from curcumin.The oxidation process of the curcumin over the modified substrate is found to be p H dependent and shows 2e^(-)and 2H^(+)proton transfer electrochemical process.The oxidation peak is obtained at 0.37 V and the peak current is found to be linear with the varying concentration of curcumin.The limit of detection(LOD)and the limit of quantification(LOQ)for the curcumin are obtained as 60 and 200 nmol/L,respectively using the FCNTs modified GCE.The enhanced electrochemical response from the FCNTs modified GCE has been utilized in the evaluation of the chemical and biochemical behaviour of curcumin in presence of transition metal ions(Cu^(2+))and ds DNA,and the observation has been supported by the spectrochemical characteristics of the interactions.
基金financially supported by the National Natural Science Foundation of China (Nos.62033002,62071112 and 61973058)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No.B16009)+1 种基金the Fundamental Research Funds for the Central Universities in China (No.N2201008)Hebei Natural Science Foundation (No.F2020501040)。
文摘Phenylacetic acid(PAA)is a primary raw material for illegal Methamphetamine(MATM)synthesis under the strong precursor chemicals supervisions of safrole and isosafrole.Therefore,trace detection of PAA at ultra-low concentration is a strategic technique and an urgent issue in the field of drug control.In this paper,trace determination of PAA at sub-nmol-L-1 concentration level is achieved by hydrogen bond adsorption and electrochemical catalysis through the prepared aminated SiO_(2)nanoparticles(SiO_(2)-NH_(2) NPs)and MoS_(2) nanosheets(NSs)modified glassy carbon electrode(GCE).The prepared MoS_(2) NS s/SiO_(2)-NH_(2) NPs modified electrode represents a detecting limit of 0.0989 nmol·L^(-1)and an obvious increasing linear range before the concentration increasement up to 60 nmol·L^(-1)in square wave voltammetry(SWV)responses of PAA.The SWV response of the modified electrode to PAA in the concentration range within 100 nmol·L^(-1)is higher than phenol,acetic acid(HOAc)and benzoic Acid(BEN).This electrochemical method for trace detection of PAA in aqueous solution with desired performance provides a feasible scheme for the detection of other drugs and aromatic precursor chemicals.
基金This work was partially funded by the National Institutes of Health NIEHS Center Grant ES005022 and by the Rutgers University Electrical and Computer Engineering Department.
文摘We present a portable non-invasive approach for measuring indicators of inflammation and oxidative stress in the respiratory tract by quantifying a biomarker in exhaled breath condensate(EBC).We discuss the fabrication and characterization of a miniaturized electrochemical sensor for detecting nitrite content in EBC using reduced graphene oxide.The nitrite content in EBC has been demonstrated to be a promising biomarker of inflammation in the respiratory tract,particularly in asthma.We utilized the unique properties of reduced graphene oxide(rGO);specifically,the material is resilient to corrosion while exhibiting rapid electron transfer with electrolytes,thus allowing for highly sensitive electrochemical detection with minimal fouling.Our rGO sensor was housed in an electrochemical cell fabricated from polydimethyl siloxane(PDMS),which was necessary to analyze small EBC sample volumes.The sensor is capable of detecting nitrite at a low over-potential of 0.7 V with respect to an Ag/AgCl reference electrode.We characterized the performance of the sensors using standard nitrite/buffer solutions,nitrite spiked into EBC,and clinical EBC samples.The sensor demonstrated a sensitivity of 0.21μAμM^(−1) cm^(−2) in the range of 20–100μM and of 0.1μAμM^(−1) cm^(−2) in the range of 100–1000μM nitrite concentration and exhibited a low detection limit of 830 nM in the EBC matrix.To benchmark our platform,we tested our sensors using seven pre-characterized clinical EBC samples with concentrations ranging between 0.14 and 6.5μM.This enzyme-free and label-free method of detecting biomarkers in EBC can pave the way for the development of portable breath analyzers for diagnosing and managing changes in respiratory inflammation and disease.
基金financially supported by the National Natural Science Foundation of China(No.51204021)the National Science and Technology Plan of China(No.2012BAB10B10)
文摘The electrochemical reduction mechanism of hafnium ion(IV) was studied in NaC1-KC1-K2HfC16 melts on a molybdenum electrode. The cyclic voltammetry study shows that Hf(IV) is reduced to hafnium metal in double two-electron process, that is: Hf(IV) + 2e→Hf(II) and Hf(II) + 2e- →Hf, and the electrochemical reduction of Hf(IV) pro- cess was diffusion-controlled. The diffusion coefficients were calculated at several temperatures, and the results obey the Arrhenius law. According to the relationship oflnD versus 1/T, the corresponding activation energy was determined to be 158.8 kJ.mol- x. The square wave voltammetry results further confirm the reduction mechanism of hafnium.
基金supported by the National Natural Science Foundation of China(81771929)China Postdoctoral Science Foundation(2017M611911)
文摘An ultrasensitive electrochemical aptasensor is presented for prostate specific antigen(PSA) detection. DNA tetrahedronaptamer is designed, which not only facilitates the molecular self-assembly events,but also improves the recognition efficiency between PSA and aptamer sequence on the electrode interface. The DNA conformation on top of DNA tetrahedron changes accordingly, which can be further digested by Exonuclease T(Exo T), a type of single-strand specific nuclease. Electrochemical species are removed synchronously and the initial PSA level can thus be determined. A linear range from 0.5 pg mL^(-1) to50 ng mL^(-1) is achieved with the limit of detection(LOD) as low as 0.15 pg mL^(-1). Moreover, this proposed method is highly selective and is successfully applied to determine PSA in human serum samples.