Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came o...Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came out due to wanting to know if a cosmological constant, as given in the Einstein field equations is commensurate with the byproduct of squeezed states. We compare our answer, with the influx of energy as given by a modified Heinsenberg uncertainty principle, at the start of the inflationary era. The so called influx of energy is tied into the squeezed state phenomena as written up in the onset of this article. The impetus to writing this document came from Dr. Karim, in an e mail which the author relates to, in the introduction. Our claim is that the smallness of is what is driving the existence of the squeezed states.展开更多
It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squ...It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.展开更多
We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because o...We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.展开更多
After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in gene...After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E.展开更多
文摘Our question delves into the nature of early universe vacuum fields, and if this initial vacuum field corresponds to a configuration of early universe space-time at the start of inflation. The answer as to this came out due to wanting to know if a cosmological constant, as given in the Einstein field equations is commensurate with the byproduct of squeezed states. We compare our answer, with the influx of energy as given by a modified Heinsenberg uncertainty principle, at the start of the inflationary era. The so called influx of energy is tied into the squeezed state phenomena as written up in the onset of this article. The impetus to writing this document came from Dr. Karim, in an e mail which the author relates to, in the introduction. Our claim is that the smallness of is what is driving the existence of the squeezed states.
文摘It is found that the field of the combined mode of the probe wave and the phase conjugate wave in the process of non-degenerate four-wave mixing exhibits higher-order squeezing to all even orders. The higher-order squeezed parameter and squeezed limit due to the modulation frequency are investigated. The smaller the modulation frequency is, the stronger the degree of higher-order squeezing becomes. Furthermore, the hlgher-order uncertainty relations in the process of non-degenerate four-wave mixing are presented for the first time. The product of higher-order noise moments is related to even order number N and the length L of the medium.
文摘We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity. We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment, which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers. In the case of superconductors, this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field, and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time. In the case of ultracold atomic Fermi gases, this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity. Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors, and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
文摘After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E.