Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were char...Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were characterized by XRD, Shrinkage, porosity and pore size of the porous BSCF as a function of sintering temperature were investigated. It was found that the cubic perovskite structure could be formed after calcination at 800 ℃ for 2 h, but not well crystallized as seen from some unknown phases, and the pure cubic perovskite structure was formed after calcination at 1150 ℃ for 2 h. The panicle size of BSCF was less than 1-2 μm. The shrinkage of the porous BSCF increased with sintering temperature, but the opposite was true for the porosity. After sintering at 1100 ℃ for 4 h, the porous BSCF was still in an appropriate structure, with porosity of 29% and electrical conductivity above 400 S·cm^-1.展开更多
通过甘氨酸硝酸盐法(GNP)合成了钙钛矿型Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)复合氧化物粉体。经压制、烧结后,得到了BSCF烧结体试样,还通过硝酸溶液浸蚀处理对烧结体试样进行了表面浸蚀处理。采用X射线衍射仪(XRD)对煅烧后的粉体进...通过甘氨酸硝酸盐法(GNP)合成了钙钛矿型Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)复合氧化物粉体。经压制、烧结后,得到了BSCF烧结体试样,还通过硝酸溶液浸蚀处理对烧结体试样进行了表面浸蚀处理。采用X射线衍射仪(XRD)对煅烧后的粉体进行了相成分分析;采用扫描电子显微镜(SEM)及能谱仪(EDS)对烧结体和表面浸蚀后烧结体样品的微观组织和成分进行了表征;对烧结体的致密度、电导率进行了测试分析,并在自制的氧渗透装置上测定了BSCF钙钛矿膜的透氧量,分析了温度和不同氧分压差等对膜透氧性能的影响。实验结果表明,甘氨酸-硝酸盐法所制备的前驱体粉末在900℃煅烧3 h后可获得具有单一钙钛矿结构的BSCF粉体,1100℃煅烧的BSCF烧结体的电导率在600℃时最大达到38.15 S·cm-1。其透氧量随着温度和氧分压差的升高而增大,且硝酸表面浸蚀处理后,BSCF膜片的透氧性能有明显提高,透氧速率提高1.6~4.5倍。850℃,20%O2-80%N2混合气体/He条件下,浸蚀后的透氧膜片的透氧量达到2.36 m L/cm2·min,而未浸蚀透氧膜片的透氧量仅为1.36 m L/cm2·min。展开更多
The nano ceramic Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) powders have been synthesized by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode mater...The nano ceramic Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) powders have been synthesized by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Glycine was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 850℃/3 hr in the air using Thermolyne 47,900 furnace. These powders were characterized by employing SEM/EDS, XRD and TGA/DTA techniques. The SEM images BSCF powder indicate the presence of highly porous spherical particles with nano sizes. The XRD results shows the formation of BSCF perovskite phase at the calcination temperature of 850℃. From XRD line broadening technique, the average crystllite size of the BSCF powders were found to be around 9.15 - 11.83 nm and 13.63 - 17.47 nm for as prepared and after calcination at 850℃ respectively. The TGA plot shows that there is no weight loss after the temperature around 450℃ indicating completion of combustion.展开更多
文摘Ba0.5Sr0.5Co0.5Fe0.2O3-σ(BSCF), a new cathode material for solid oxide fuel cell (SOFC), was synthesized by polyacrylicacid (PAA) method. The lattice structures of samples calcined at different temperatures were characterized by XRD, Shrinkage, porosity and pore size of the porous BSCF as a function of sintering temperature were investigated. It was found that the cubic perovskite structure could be formed after calcination at 800 ℃ for 2 h, but not well crystallized as seen from some unknown phases, and the pure cubic perovskite structure was formed after calcination at 1150 ℃ for 2 h. The panicle size of BSCF was less than 1-2 μm. The shrinkage of the porous BSCF increased with sintering temperature, but the opposite was true for the porosity. After sintering at 1100 ℃ for 4 h, the porous BSCF was still in an appropriate structure, with porosity of 29% and electrical conductivity above 400 S·cm^-1.
文摘通过甘氨酸硝酸盐法(GNP)合成了钙钛矿型Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF)复合氧化物粉体。经压制、烧结后,得到了BSCF烧结体试样,还通过硝酸溶液浸蚀处理对烧结体试样进行了表面浸蚀处理。采用X射线衍射仪(XRD)对煅烧后的粉体进行了相成分分析;采用扫描电子显微镜(SEM)及能谱仪(EDS)对烧结体和表面浸蚀后烧结体样品的微观组织和成分进行了表征;对烧结体的致密度、电导率进行了测试分析,并在自制的氧渗透装置上测定了BSCF钙钛矿膜的透氧量,分析了温度和不同氧分压差等对膜透氧性能的影响。实验结果表明,甘氨酸-硝酸盐法所制备的前驱体粉末在900℃煅烧3 h后可获得具有单一钙钛矿结构的BSCF粉体,1100℃煅烧的BSCF烧结体的电导率在600℃时最大达到38.15 S·cm-1。其透氧量随着温度和氧分压差的升高而增大,且硝酸表面浸蚀处理后,BSCF膜片的透氧性能有明显提高,透氧速率提高1.6~4.5倍。850℃,20%O2-80%N2混合气体/He条件下,浸蚀后的透氧膜片的透氧量达到2.36 m L/cm2·min,而未浸蚀透氧膜片的透氧量仅为1.36 m L/cm2·min。
文摘The nano ceramic Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF) powders have been synthesized by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Glycine was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 850℃/3 hr in the air using Thermolyne 47,900 furnace. These powders were characterized by employing SEM/EDS, XRD and TGA/DTA techniques. The SEM images BSCF powder indicate the presence of highly porous spherical particles with nano sizes. The XRD results shows the formation of BSCF perovskite phase at the calcination temperature of 850℃. From XRD line broadening technique, the average crystllite size of the BSCF powders were found to be around 9.15 - 11.83 nm and 13.63 - 17.47 nm for as prepared and after calcination at 850℃ respectively. The TGA plot shows that there is no weight loss after the temperature around 450℃ indicating completion of combustion.