New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aram...New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aramay pluton yields an age of 300.7 ~ 2.3 Ma for the enclave and 300.0 ~ 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421 0.703526) and positive eHf(t) (5.5--14.1) and eNd(t) (7.3--8.1) values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive eHf(t) (7.6--13.2, 14.2--14.9) and εNd(t) (6.8-8.3, ~6.9) values. They are enriched in LILEs (Rb, Ba and U) and LREE and depleted in HFSEs (Nb and Ta) with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust-and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West lun^gar.展开更多
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru...The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.展开更多
The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controver...The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.展开更多
Feldspar Pb isotopes have been widely used to trace magmatic formation and evolution processes.However,it remains unclear whether post-magmatic thermal events can affect feldspar Pb isotopic ratios.Here,the in situ Pb...Feldspar Pb isotopes have been widely used to trace magmatic formation and evolution processes.However,it remains unclear whether post-magmatic thermal events can affect feldspar Pb isotopic ratios.Here,the in situ Pb isotopic composition of feldspar hosted in granitic rocks(thirteen Archean and one Paleoproterozoic)from the northern Kongling terrane,Yangtze Craton,South China,is analyzed.The samples reveal a substantial variation in their Pb isotopic composition,spanning the gap between the 1.9 Ga and present-day geochrons,which indicates extensive resetting by later tectonothermal events.This resetting was interpreted to have likely resulted from Paleoproterozoic and Neoproterozoic tectonothermal events related to the assembly and breakup of the Columbia and Rodinia supercontinents.These results suggest that Pb isotopes should be used cautiously when tracing magma sources and petrogenesis in magmatic rocks that have experienced post-magmatic reworking.However,the in situ Pb isotopic composition of feldspar in ancient granitoids may also potentially be used to reveal later tectonothermal events.The extensive resetting of the Pb isotopic composition in feldspar by regional thermal events may also provide new insights into our understanding of the Pb isotope paradox.展开更多
1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approxim...1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approximately 500 km in northern Xinjiang,China(Fig.1a).The Altay Orogenic Belt has undergone two-way accretion of the Paleozoic crust and the Meso-Cenozoic intracontinental orogeny,leading to the formation of large numbers of intermediate-acid intrusions.More than 100000 pegmatite veins have been discovered in the intermediate-acid intrusions,and they constitute an important rare metal metallogenic belt of China(Fig.1b).展开更多
A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary...A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.展开更多
Particulate organic matter(POM)is an important energy source for aquatic consumers,understanding its origin and composition is essential for understanding the energetic dynamics of aquatic environments.The aim of this...Particulate organic matter(POM)is an important energy source for aquatic consumers,understanding its origin and composition is essential for understanding the energetic dynamics of aquatic environments.The aim of this study was to analyze the relationship between POM and phytoplankton(isotopic values and chlorophyll concentration)and abiotic variables during dry and rainy seasons.Sampling was conducted in rivers and lagoons in the floodplain of the Upper ParanáRiver.We found a greater difference in ^(δ13)C values of POM between sampling points than between seasons,indicating that the composition of regional sources influences the composition of POM more than dry and rainy seasons.In addition,the concentration of chlorophyll during the dry season was positively correlated with ^(δ13)C values during that rainy period.Additionally,we found a relationship between factors limiting the growth of phytoplankton and ^(δ13)C values of POM,such as phosphate ions,indicating that variables that regulate phytoplankton growth tend to influence the composition of POM in river floodplains.Therefore,maintaining the variables that regulate the phytoplankton community is of fundamental importance for the composition of POM,an important energy source in aquatic environments.展开更多
Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt...Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.展开更多
Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it...Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.展开更多
Stable isotope analysis is a widely used method for gathering ecological insights into the diet and feeding habitats of various species. While captive studies often limit lethal sampling and differ from wild condition...Stable isotope analysis is a widely used method for gathering ecological insights into the diet and feeding habitats of various species. While captive studies often limit lethal sampling and differ from wild conditions, they offer valuable insights into inherent isotopic variations among individuals, which are often assumed to reflect differences between natural populations. In the Sea Turtle Conservation Program, loggerhead turtle hatchlings from different nests were fed. Necropsies were conducted on turtles that died during this period, obtaining bone fragments for analysis. We evaluated the isotopic variation of carbon (δ<sup>13</sup>C) and nitrogen (δ<sup>15</sup>N) in bone tissue across six turtle nests (n = 66 samples) and assessed differences in Straight Carapace Length (SCL, n = 71 samples). Using SIBER and nicheROVER in R, we calculated niche width and overlap, while the simmr package determined primary prey assimilation. Despite feeding the hatchlings the same prey, we observed variations in nitrogen isotope assimilation between nests. Nests 4 and 6 had a niche width >1.8‰, indicating consistent consumption frequencies across all prey and >70% niche overlap with other nests. In contrast, nests 1 and 2 showed a narrower niche width (Mugil sp. constituted the primary diet component (>40%) across all groups. This study demonstrates how factors like competition or prey preference can influence the assimilation of diet, even when the source remains constant (inherent variation).展开更多
To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable is...To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.展开更多
Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structur...Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.展开更多
Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze ...ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.展开更多
The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopi...The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1-1.06 for biotite mon- zonitic granites and 1.04-1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm-633 ppm), Sr/Y ratios (18.5-174), and (La/Yb)N ratios (17.6-57) and low MgO (0.04 wt.%-0.83 wt.%), Y (3.0 ppm-17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon tHe(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.展开更多
As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of...As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).展开更多
We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the rela...We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the relationship between apatite and the composition of the whole rock.The purpose is to use the apatite geochemical data to constrain the evolutionary process of trachytic magma and the petrogenesis of trachyte in the cone-forming period of the Tianchi volcano.Apatite(Ca_(5)(PO_(4))_(3)(OH,F,Cl))is a common accessory mineral that occurs widely in volcanic rocks in the TVA.The apatites in the trachyte are mainly subhedral-anhedral,having the characteristics of magmatic apatite.In terms of oxide and element geochemistry,they have homogeneous Al_(2)O_(3),SiO_(2),MgO,P_(2)O_(5),K_(2)O,CaO and heterogeneous TiO2,with high F content.They are generally enriched in Th,U and LREEs,depleted in Nb,Ta,Zr,Hf and HFSEs,showing negative Ba,Sr and Ti anomalies,similar to those of the whole-rock host trachytes.The ratios of high(La/Yb)_(N),low δEu(Eu/Eu*),Sr/Y value and ΣREE content in apatite,and the F,Sr,Y,Th/U,La/Sm,and Nd/Tb with ΣREE andδEu anomalies showed a linear correlation,all of those indicating that the host magma has the characteristic of high differentiation.The apatite grains generally having ^(147)Sm/^(144)Nd,^(143)Nd/^(144)Nd ratios and ε_(Nd)(t)values of 0.1072-0.1195,0.5123-0.5126 and -3.49 to -0.10,respectively,are similiar to those of the host rock.The Nd model ages TDM1 are 949-803 Ma in apatite.Combined with theεNd(t)value of the apatite core(-7.06 to-3.49),we conclude that the initial magma of the host trachyte was derived from the partial melting of Proterozoic crustal material and there was an assimilation of wall rocks during its evolution.展开更多
Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingsha...Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.展开更多
Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive re...Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.展开更多
The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic comp...The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.展开更多
基金financially supported by the National Science and Technology Major Project(No. 2011ZX05008-001)the National Natural Science Foundation of China(No.40739906)the Chinese State 973 Project(No. 2011CB201100)
文摘New whole-rock major and trace elements, and zircon U Pb and Hf-Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U -Pb dating of the l(aramay pluton yields an age of 300.7 ~ 2.3 Ma for the enclave and 300.0 ~ 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421 0.703526) and positive eHf(t) (5.5--14.1) and eNd(t) (7.3--8.1) values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive eHf(t) (7.6--13.2, 14.2--14.9) and εNd(t) (6.8-8.3, ~6.9) values. They are enriched in LILEs (Rb, Ba and U) and LREE and depleted in HFSEs (Nb and Ta) with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust-and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West lun^gar.
基金funded by the National Natural Science Foundation of China(41872232)the Beijing Geological Survey Project(PXM 2016-158203-000008,PXM 2018-158203-000014)the Beijing Innovation Studio(Urban Geology,Active Structure,and Monitoring).
文摘The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2901903)the Geological Comprehensive Research Project of China’s Metallurgical Geology Bureau(Grant No.[2022]CMGBDZYJ005),the National Natural Science Foundation of China(Grant No.42002097)the Geological Investigation Project(Grant Nos.DD20230031,DD20221690,DD20230049,DD20230337).
文摘The Nuri deposit is the only Cu-W-Mo polymetallic deposit with large-scale WO3 resources in the eastern section of the Gangdese metallogenic belt,Tibet,China.However,the genetic type of this deposit has been controversial since its discovery.Based on a study of the geological characteristics of the deposit,this study presents mineralization stages,focusing on the oxide stage and the quartz-sulfide stage where scheelite is mainly formed,referred to as Sch-A and Sch-B,respectively.Through LA-ICP-MS trace element and Sr isotope analyses,the origin,evolutionary process of the oreforming fluid and genesis of the ore deposit are investigated.Scanning Electron Microscope-Cathodoluminescence(SEMCL)observations reveal that Sch-A consists of three generations,with dark gray homogenous Sch-A1 being replaced by relatively lighter and homogeneous Sch-A2 and Sch-A3,with Sch-A2 displaying a gray CL image color with vague and uneven growth bands and Sch-A3 has a light gray CL image color with hardly any growth band.In contrast,Sch-B exhibits a‘core-rim’structure,with the core part(Sch-B1)being dark gray and displaying a uniform growth band,while the rim part(Sch-B2)is light gray and homogeneous.The normalized distribution pattern of rare earth elements in scheelite and Sr isotope data suggest that the early ore-forming fluid in the Nuri deposit originated from granodiorite porphyry and,later on,some country rock material was mixed in,due to strong water-rock interaction.Combining the O-H isotope data further indicates that the ore-forming fluid in the Nuri deposit originated from magmatic-hydrothermal sources,with contributions from metamorphic water caused by water-rock interaction during the mineralization process,as well as later meteoric water.The intense water-rock interaction likely played a crucial role in the precipitation of scheelite,leading to varying Eu anomalies in different generations of scheelite from the oxide stage to the quartz-sulfide stage,while also causing a gradual decrease in oxygen fugacity(fO2)and a slow rise in pH value.Additionally,the high Mo and low Sr contents in the scheelite are consistent with typical characteristics of magmatic-hydrothermal scheelite.Therefore,considering the geological features of the deposit,the geochemical characteristics of scheelite and the O-H isotope data published previously,it can be concluded that the genesis of the Nuri deposit belongs to porphyry-skarn deposit.
基金supported by the Key Laboratory of Gold Mineralization Processes and Resource Utilization,MNRShandong Provincial Key Laboratory of Metallogenic Geological Process and Resource Utilization(Grant No.KFKT202103)National Natural Science Foundation of China(Grant No.41876037)。
文摘Feldspar Pb isotopes have been widely used to trace magmatic formation and evolution processes.However,it remains unclear whether post-magmatic thermal events can affect feldspar Pb isotopic ratios.Here,the in situ Pb isotopic composition of feldspar hosted in granitic rocks(thirteen Archean and one Paleoproterozoic)from the northern Kongling terrane,Yangtze Craton,South China,is analyzed.The samples reveal a substantial variation in their Pb isotopic composition,spanning the gap between the 1.9 Ga and present-day geochrons,which indicates extensive resetting by later tectonothermal events.This resetting was interpreted to have likely resulted from Paleoproterozoic and Neoproterozoic tectonothermal events related to the assembly and breakup of the Columbia and Rodinia supercontinents.These results suggest that Pb isotopes should be used cautiously when tracing magma sources and petrogenesis in magmatic rocks that have experienced post-magmatic reworking.However,the in situ Pb isotopic composition of feldspar in ancient granitoids may also potentially be used to reveal later tectonothermal events.The extensive resetting of the Pb isotopic composition in feldspar by regional thermal events may also provide new insights into our understanding of the Pb isotope paradox.
基金Supported by the Natural Science Foundation of Shaanxi Province(2024JC-ZDXM-22,2020JM-311)the Project of China Geological Survey(DD20240128,DD20230284,DD20221636)。
文摘1.Objective The Altay Orogenic Belt in Xinjiang,China is located in the west of the Central Asian Orogenic Belt and in the transition zone between the Siberian Plate and the Kazakhstan-Junggar Plate,extending approximately 500 km in northern Xinjiang,China(Fig.1a).The Altay Orogenic Belt has undergone two-way accretion of the Paleozoic crust and the Meso-Cenozoic intracontinental orogeny,leading to the formation of large numbers of intermediate-acid intrusions.More than 100000 pegmatite veins have been discovered in the intermediate-acid intrusions,and they constitute an important rare metal metallogenic belt of China(Fig.1b).
文摘A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.
基金Supported by the Research Nucleus in LimnologyIchthyology and Aquaculture (NUPELIA) for logistic support+4 种基金the Laboratory of Energetic Ecology and the Long-term Ecological Research Program (PELD/CNPq)Site 6-PIAP (upper ParanáRiver floodplain)PROEXUEMand Fundação Araucária for the scholarship
文摘Particulate organic matter(POM)is an important energy source for aquatic consumers,understanding its origin and composition is essential for understanding the energetic dynamics of aquatic environments.The aim of this study was to analyze the relationship between POM and phytoplankton(isotopic values and chlorophyll concentration)and abiotic variables during dry and rainy seasons.Sampling was conducted in rivers and lagoons in the floodplain of the Upper ParanáRiver.We found a greater difference in ^(δ13)C values of POM between sampling points than between seasons,indicating that the composition of regional sources influences the composition of POM more than dry and rainy seasons.In addition,the concentration of chlorophyll during the dry season was positively correlated with ^(δ13)C values during that rainy period.Additionally,we found a relationship between factors limiting the growth of phytoplankton and ^(δ13)C values of POM,such as phosphate ions,indicating that variables that regulate phytoplankton growth tend to influence the composition of POM in river floodplains.Therefore,maintaining the variables that regulate the phytoplankton community is of fundamental importance for the composition of POM,an important energy source in aquatic environments.
基金funded by the project of China Geological Survey(Grant No.DD20221677-2)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.JKYQN202307)。
文摘Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030003).
文摘Pyrite is one of the common authigenic minerals in marine sediments.Previous studies have shown that the morphological and isotopic characteristics of pyrite are closely related to the geochemical environment where it is formed.To better understand the for-mation mechanism of authigenic pyrite,we analyzed the isotopic composition,morphology,and distribution of pyrite in the sediment at 500m below the seafloor from Xisha Trough,South China Sea.Mineral morphologies were observed by scanning electron micros-copy and Raman spectrography.X-Ray computed tomography was applied to measure the particle size of pyrite.The size of pyrite crystals in the matrix sediment mainly ranged between 25 and 65µm(av.ca.40µm),although crystals were larger(av.ca.50μm)in the veins.The pyrites had a fine-grained truncated octahedral shape with occasionally well-developed growth steps,which implies the low growth rate and weak anaerobic oxidation of methane-sulfate reduction when pyrite was formed.Theδ^(34)S values of pyrites ranged from+20.8‰Vienna-defined Canyon Diablo Troilite(V-CDT)to+33.2‰V-CDT and from+44.8‰V-CDT to+48.9‰,which suggest two growth stages.In the first stage,with the continuous low methane flux,the pyrite possibly formed in an environment with good access to seawater.In the second stage,the pyrites mainly developed in sediment fractures and appeared in veins,probably due to the limited availability of sulfate.The less exposure of pyrite to the environment in the second stage was probably caused by sediment accumulation or perturbation.In this study,an episodic pyritization process was identified,and the paleoenvironment was reconstructed for the sediment investigated.
文摘Stable isotope analysis is a widely used method for gathering ecological insights into the diet and feeding habitats of various species. While captive studies often limit lethal sampling and differ from wild conditions, they offer valuable insights into inherent isotopic variations among individuals, which are often assumed to reflect differences between natural populations. In the Sea Turtle Conservation Program, loggerhead turtle hatchlings from different nests were fed. Necropsies were conducted on turtles that died during this period, obtaining bone fragments for analysis. We evaluated the isotopic variation of carbon (δ<sup>13</sup>C) and nitrogen (δ<sup>15</sup>N) in bone tissue across six turtle nests (n = 66 samples) and assessed differences in Straight Carapace Length (SCL, n = 71 samples). Using SIBER and nicheROVER in R, we calculated niche width and overlap, while the simmr package determined primary prey assimilation. Despite feeding the hatchlings the same prey, we observed variations in nitrogen isotope assimilation between nests. Nests 4 and 6 had a niche width >1.8‰, indicating consistent consumption frequencies across all prey and >70% niche overlap with other nests. In contrast, nests 1 and 2 showed a narrower niche width (Mugil sp. constituted the primary diet component (>40%) across all groups. This study demonstrates how factors like competition or prey preference can influence the assimilation of diet, even when the source remains constant (inherent variation).
基金support granted to carry out the research,and for the funding,Dr.Graciela Herrera Zamarron,responsible for the project with Contract number 0266-1O-ED-F-DGAT-UNAM-2-19-1928.
文摘To explain the presence and spatial distribution of NO_(3)^(−)and N-NH_(3)in the Aquifer of the Metropolitan Area of Mexico City(AMAMC),a hydrogeochemical and isotopic analysis using^(13)C DIC(as well as the stable isotopes^(18)O and^(2)H)in groundwater was conducted.This aquifer is located in an old closed lacustrine volcano-sedimentary basin;some wells hosted in the semi-confined zone contain high N-NH_(3)concentrations,while others present NO_(3)^(−)contents in the recharge zones(hosted in an oxidizing environment).In this study,a change in the isotopic signature(primarily in^(18)O and^(2)H)was observed from the recharge zones to the basin center in some of the wells with high NO_(3)^(−)concentrations,this behavior can be attributed to evaporation during the incorporation of recently infiltrated water.In addition,the results for^(13)C(along with ^(2) H)in wells with the highest N-NH_(3)concentrations exhibited an atypically broad range of values.Results indicated the occurrence of hydrogeochemical and/or biochemical processes in the aquifer(in an oxidizing or reducing environment),such as organic degradation,bacterial decomposition(primarily in the ancient Lake Texcoco and which acts as a natural sink for carbon,nitrogen,sulfur,and phosphorus),besides rock weathering and dissolution,which may be responsible for a very marked isotopic modification of the^(13)C(and,to a lesser extent,2 H).Methanotrophic bacterial activity and methanogenic activity may be related to N-NH_(3)removal processes by oxidation and residual water incorporation respectively,whereas the increase in the NO_(3)^(−)content in some wells is due to the recent contribution of poor-quality water due to contamination.
基金supported by National Key R&D Program of China(2021YFA1502803)the National Natural Science Foundation of China(NSFC)(21972066,91745202)+3 种基金NSFC-Royal Society Joint Program(21661130149)L.P.thanks the Royal Society and Newton Fund for a Royal Society-Newton Advanced Fellowshipsupported by the Research Funds for the Frontiers Science Centre for Critical Earth Material Cycling,Nanjing Universitya Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Recent advances in utilizing ^(17)O isotopic labeling methods for solid-state nuclear magnetic resonance(NMR)investigations of metal oxides for lithium-ion batteries have yielded extensive insights into their structural and dynamic details.Herein,we commence with a brief introduction to recent research on lithium-ion battery oxide materials studied using ^(17)O solid-state NMR spectroscopy.Then we delve into a review of ^(17)O isotopic labeling methods for tagging oxygen sites in both the bulk and surfaces of metal oxides.At last,the unresolved problems and the future research directions for advancing the ^(17)O labeling technique are discussed.
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
基金supported by the National Natural Science Foundation of China (Nos. 40773019 and 40821061)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. B07039)
文摘ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.
基金financially supported by the National Basic Research Program of China (No. 2014CB440906)the Strateic Priority Research Program (B) of Chinese Academy of Sciences (No. XDB18030200)the National Natural Sciences Foundation of China (Nos. 41473049, 41103027)
文摘The Huichizi granite complex is the largest Paleozoic 1-type intrusion located in the North Qinling orogenic belt (NQB). In this study, we present systematic geochemical element data, zircon U-Pb ages, Ln-Hf isotopic data, and Sr-Nd isotopic data for the Huichizi granites. In terms of mineral and chemical compositions, these granites are biotite monzonitic and alkali-feldspar granites, both of which are characterized by high SiO2 and total alkali contents and low MgO, TiO2, and TFeO contents. These granites are weakly peraluminous (A/CNK values are 1-1.06 for biotite mon- zonitic granites and 1.04-1.09 for alkali-feldspar granites) and possess the geochemical characteristics of adakitic rocks, e.g., high Sr contents (319 ppm-633 ppm), Sr/Y ratios (18.5-174), and (La/Yb)N ratios (17.6-57) and low MgO (0.04 wt.%-0.83 wt.%), Y (3.0 ppm-17.2 ppm), and heavy rare-earth element (HREE) contents. This indicates that these rocks were most likely derived from the partial melting of a thickened lower crust. In situ zircon U-Pb dating of these granites yields Early Caledonian ages (437 Ma for biotite monzonitic granites and 424 Ma for alkali-feldspar granites), indicating that the Huichizi granitic complex is the product of multi-periodic magmatism. The positive but varying zircon tHe(t) values (+0.6 to +8.5) suggest that this thickened lower crust was mainly juvenile, i.e., accreted from depleted mantle during the Neo-Mesoproterozoic Period, but involved the ancient recycled crust. Biotite monzonitic granites formed during crust thickening at the extrusion stage, whereas the alkali granites formed during crust thickening at the extension stage (post extrusion). The Huichizi granite complex witnessed the process of extrusion to extension because of the collision between the NCB and the Qinling microcontinent in the Caledonian.
基金financially supported by the National Natural Science Foundation of China(Grant No.41403035)the National Basic Research Program of China(Grant No.2014CB440901)。
文摘As the principal ore mineral in various tungsten(-gold)deposits,scheelite(CaWO_(4))plays an important role in directly dating the timing of ore formation,and in tracing associated material sources through the study of its Sm-Nd geochronology and Nd isotopic characteristics.Since the retention of Sm-Nd systematics within scheelite is presently unconstrained,equivocal interpretations for isotopic data resulting from this method have occurred quite often in previous studies that apply these isotopic data.In order to better elucidate the closure of Sm-Nd in scheelite,the kinetics of Sm and Nd within this mineral lattice were investigated through calculation of diffusion constants presented herein.The following Arrhenius relations were obtained:D_(Nd)=4.00exp(-438 kJ·mol^(–1)/RT)cm^(2)/s D_(Sm)=1.85exp(-427 kJ·mol^(–1)/RT)cm^(2)/s showing diffusion rate of Nd is near identical to Sm in scheelite when at the same temperature.However,compared to other rare earth elements(REEs),which have markedly different atomic radii to either Nd or Sm,these are shown to exhibit a great variation in diffusivities.The observed trends in our data are in excellent agreement with the diffusion characteristics of REEs in other tetragonal ABO4 minerals,indicating that ionic radius is a key constraint to the diffusivity of REEs in the various crystal lattices.With this in mind,the same substitution mechanism and a very slight discrepancy in radii will allow us to infer that significant Sm/Nd diffusional fractionation in scheelite is unlikely to occur during most geological processes.Based upon the diffusion data determined herein,Sm and Nd closure temperatures and retention times in scheelite are discussed in terms of diffusion dynamics.Those results suggest that closure temperatures for Sm-Nd within this mineral are relatively high in contrast to the temperature ranges of ore-formation responsible for scheelite-related deposits,and any later thermal environments.It is likely,therefore,that relevant isotopic information could be easily retained under most geological conditions,since initial crystallization of the scheelite.In addition,comparison of this mineral-element pair over a range of temperatures with some other common minerals used as geochronometers(e.g.,zircon and apatite)indicates that Sm-Nd system has a slower diffusive rate in scheelite than for Sr in apatite or Ar in quartz,and only a little faster than for Pb in zircon.It should be noted,within most hydrothermal deposits where zircon has crystallized,its size is typically no more than 100μm,whereas scheelite commonly occurs as macroscopic grains.For this reason,the larger dimensions of scheelite would provide a robust Sm-Nd system more able to resist perturbations,relating to any later thermal process.As such Sm-Nd investigations of scheelite are akin to U-Pb within zircon samples used in isotopic dating.These observations indicate that Sm-Nd age and isotopic information can provide reliable data in all but the most extreme case,especially when data are extracted from macroscopic grains of scheelite that are chosen to be“pristine”(i.e.,free of surface alteration and/or fractures).
基金funded by research on the strategy of Improving the All-for-one Tourism Transportation Capacity of Changbai Mountain and the China Scholarship Council(Grant Nos.JL2021-03 and 202104190014)。
文摘We report the oxide,element geochemistry and Nd isotopic geochemical data of apatite in the middle Pleistocene medium-and fine-grained trachyte in the Tianchi volcanic area(TVA)of Changbai Mountain,discussing the relationship between apatite and the composition of the whole rock.The purpose is to use the apatite geochemical data to constrain the evolutionary process of trachytic magma and the petrogenesis of trachyte in the cone-forming period of the Tianchi volcano.Apatite(Ca_(5)(PO_(4))_(3)(OH,F,Cl))is a common accessory mineral that occurs widely in volcanic rocks in the TVA.The apatites in the trachyte are mainly subhedral-anhedral,having the characteristics of magmatic apatite.In terms of oxide and element geochemistry,they have homogeneous Al_(2)O_(3),SiO_(2),MgO,P_(2)O_(5),K_(2)O,CaO and heterogeneous TiO2,with high F content.They are generally enriched in Th,U and LREEs,depleted in Nb,Ta,Zr,Hf and HFSEs,showing negative Ba,Sr and Ti anomalies,similar to those of the whole-rock host trachytes.The ratios of high(La/Yb)_(N),low δEu(Eu/Eu*),Sr/Y value and ΣREE content in apatite,and the F,Sr,Y,Th/U,La/Sm,and Nd/Tb with ΣREE andδEu anomalies showed a linear correlation,all of those indicating that the host magma has the characteristic of high differentiation.The apatite grains generally having ^(147)Sm/^(144)Nd,^(143)Nd/^(144)Nd ratios and ε_(Nd)(t)values of 0.1072-0.1195,0.5123-0.5126 and -3.49 to -0.10,respectively,are similiar to those of the host rock.The Nd model ages TDM1 are 949-803 Ma in apatite.Combined with theεNd(t)value of the apatite core(-7.06 to-3.49),we conclude that the initial magma of the host trachyte was derived from the partial melting of Proterozoic crustal material and there was an assimilation of wall rocks during its evolution.
基金supported by Project of Basic Science Center of National Natural Science Foundation of China(72088101)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010101)+3 种基金National Key Research and Development Program of China(2017YFC0603101)National Natural Science Foundation of China(41872125,42002158)Scientific and Technological Project of RIPED(2021ycq01)the subject development project of RIPED(yjkt2019-3).
文摘Petrogenesis of lacustrine dolostone is closely related with paleo-lake water conditions.Here we report the high spatial-resolution petrographic and geochemical results of a lacustrine dolomite nodule from the Qingshankou Formation,the Songliao Basin.Sedimentary and elemental signatures confirm the protogenetic origin of this nodule and its effectiveness in recording geochemical characteristics of paleo-lake water during dolomitization.The low Y/Ho ratios,middle rare earth element(MREE)enrichment and subtle positive Eu anomalies within the nodule indicate a fresh water source.However,the Sr isotope values in the core of the nodule(0.7076-0.7080)are close to contemporaneous seawater(0.7074),yet different from the modern river(0.7120)and the host black shale(0.7100).On the premise of excluding the influence of hydrothermal fluids,the significantly low strontium isotope values of the lacustrine dolomite might be caused by seawater interference during dolomitization.Our findings demonstrate that lacustrine dolomite within black shales is not only a faithful tracer of diagenetic water environment,but also a novel and easily identified mineralogical evidence for episodic seawater intrusion event(91 Ma)in the Songliao Basin,which supplements other paleontological and geochemical evidence.
基金This study was supported by the National Natural Science Foundation of China(Grant Number:42007407,42022059)the Sino-German mobility program(M-0393)+1 种基金the Key Research Program of the Institute of Geology and Geophysics(CAS Grant IGGCAS-201905)the CAS Youth Interdisciplinary Team(JCTD-2021-05).
文摘Analyses of stable isotopes(C,O,H)in tree rings are increasingly important cross-disciplinary programs.The rapid development in this field documented in an increasing number of publications requires a comprehensive review.This study includes a bibliometric analysis-based review to better understand research trends in tree ring stable isotope research.Overall,1475 publications were selected from the Web of Science Core Collection for 1974-2023.The findings are that:(1)numbers of annual publications and citations increased since 1974.From 1974 to 1980,there were around two relevant publications per year.However,from 2020 to 2022,this rose sharply to 109 publications per year.Likewise,average article citations were less than four per year before 1990,but were around four per article per year after 2000;(2)the major subjects using tree ring stable isotopes include forestry,geosciences,and environmental sciences,contributing to 42.5%of the total during 1974-2023;(3)the top three most productive institutions are the Chinese Academy of Sciences(423),the Swiss Federal Institute for Forest,Snow and Landscape Research(227),and the University of Arizona(204).These achievements result from strong collaborations;(4)review papers,for example,(Dawson et al.,Annu Rev Ecol Syst 33:507-559,2002)and(McCarroll and Loader,Quat Sci Rev 23:771-801,2004),are among the most cited,with more than 1000 citations;(5)tree ring stable isotope studies mainly focus on climatology and ecology,with atmospheric CO_(2) one of the most popular topics.Since 2010,precipitation and drought have received increasing attention.Based on this analysis,the research stages,key findings,debated issues,limitations and direc-tions for future research are summarized.This study serves as an important attempt to understand the progress on the use of stable isotopes in tree rings,providing scientific guid-ance for young researchers in this field.
基金The“Seven Year Action Plan”East China Sea Special Project of CNOOC under contract No.CNOOC-KJ 135 ZDXM39 SH02。
文摘The hydrocarbon gases in the L1 gas field of the Lishui-Jiaojiang Sag have been commonly interpreted to be an accumulation of pure sapropelic-type thermogenic gas.In this study,chemical components,stable isotopic compositions,and light hydrocarbons were utilized to shed light on the origins of the hydrocarbon fluids in the L1gas pool.The hydrocarbon fluids in the L1 gas pool are proposed to be a mixture of three unique components:mid-maturity oil from the middle Paleocene coastal marine Lingfeng source rock,oil-associated(late oil window)gas generated from the lower Paleocene lacustrine Yueguifeng source rock,and primary microbial gas from the paralic deposits of the upper Paleocene Mingyuefeng source rock.Here,for the first time,the hydrocarbon gases in the L1 gas pool are diagnosed as mixed oil-associated sapropelic-type gas and microbial gas via four pieces of principal evidence:(1)The abnormal carbon isotopic distributions of all methane homologues from C_(1)(CH_(4)or methane)to C_(5)(C_(5)H_(12)or pentane)shown in the Chung plot;(2)the diagnostic~(13)C-depleted C_(1)compared with the thermogenic sapropelic-type gas model,whileδ^(13)C_(2)(C_(2)H_(6)or ethane)andδ^(13)C_(3)(C_(3)H_(8)or propane)both fit perfectly;(3)the excellent agreement of the calculated carbon isotopic compositions of the pure thermogenic gas with the results of the thermal simulated gas from the type-II1 kerogen-rich Yueguifeng source rock;and(4)the oil-associated gas inferred from various binary genetic diagrams with an abnormally elevated gas oil ratio.Overall,the natural gases of the L1 gas pool were quantified in this study to comprise approximately 13%microbial gas,nearly 48%oil-associated sapropelic-type gas,and 39%of nonhydrocarbon gas.The microbial gas is interpreted to have been codeposited and entrained in the humic-kerogen-rich Mingyuefeng Formation under favorable lowtemperature conditions during the late Paleocene-middle Eocene.The microbial gas subsequently leaked into the structurally and stratigraphically complex L1 trap with oil-associated sapropelic-type gas from the Yueguifeng source rock during the late Eocene-Oligocene uplifting event.A small amount of humic-kerogen-generated oil in the L1 gas pool is most likely to be derived from the underlying Lingfeng source rock.The detailed geological and geochemical considerations of source rocks are discussed to explain the accumulation history of hydrocarbon fluids in the L1 gas pool.This paper,therefore,represents an effort to increase the awareness of the pitfalls of various genetic diagrams,and an integrated geochemical and geological approach is required for hydrocarbonsource correlation.