Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70)...Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70) semiconductor with a low ferro‐paraelectric phase transition (65℃) was studied. The photocatalytic activity for H2 production by ferroelectric and paraelectric SBN‐70 was examined. The spontaneous polarization in the ferroelectric phase strongly affected the photocata‐lytic performance and parallel ferroelectric domains significantly promoted photogenerated charge separation to result in better photocatalytic H2 production. This knowledge provides an important basis for the fabrication of ferroelectric photocatalysts with improved charge separation ability.展开更多
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are do...The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.展开更多
Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial dopin...Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.展开更多
Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragon...Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.展开更多
The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ ...The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.展开更多
基金supported by the National Natural Science Foundation of China (211373213,21373212)~~
文摘Although ferroelectrics have potential applications in photocatalysis due to their highly efficient charge separation, their mechanism of charge separation is still unknown. A ferroelectric Sr0.7Ba0.3Nb2O6 (SBN‐70) semiconductor with a low ferro‐paraelectric phase transition (65℃) was studied. The photocatalytic activity for H2 production by ferroelectric and paraelectric SBN‐70 was examined. The spontaneous polarization in the ferroelectric phase strongly affected the photocata‐lytic performance and parallel ferroelectric domains significantly promoted photogenerated charge separation to result in better photocatalytic H2 production. This knowledge provides an important basis for the fabrication of ferroelectric photocatalysts with improved charge separation ability.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132 and 51002087)
文摘The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.
基金supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132,51231007,and 11374186)
文摘Thermoelectric properties of Li-doped Sr0.70Ba0.30Nb2O6-δ ceramics were investigated in the temperature range from 323 K to 1073 K. The electrical conductivity increases significantly after lithium interstitial doping. However, both of the magnitudes of Seebeck coefficient and electrical conductivity vary non-monotonically but synchronously with the doping contents, indicating that doped lithium ions may not be fully ionized and oxygen vacancy may also contribute to carriers. The lattice thermal conductivity increases firstly and then decreases as the doping content increases, which is affected by competing factors.Thermoelectric performance is enhanced by lithium interstitial doping due to the increase of the power factor and the thermoelectric figure of merit reaches maximum value (0.21 at 1073 K) in the sample Sr0.70Ba0.30Li0.10Nb2O6.
基金supported by the National Natural Science Foundation of China(No.11475086)
文摘Sr0.6 Ba0.4 Nb2 O6 micro-rods are prepared by the molten-salt method with K2 SO4,KCl-K2 SO4,and KCl as fluxes.It reveals that the Sr0.6 Ba0.4 Nb2 O6 synthesized with KCl as a flux exhibits a single phase with tetragonal tungsten bronze structure.The measurement of X-ray diffraction indicates that the Sr0.6 Ba0.4 Nb2 O6 micro-rods synthesized at 1 300℃are anisotropic.The morphology of the powers is examined by transmission electron microscope.It reveals that the length-diameter ratio of Sr0.6 Ba0.4 Nb2 O6 micro-rods increases with increasing annealing temperature from 900℃to 1 300℃.At 1 300℃,the rod possesses a large length-diameter ratio of 8∶1.Moreover,the analysis of the piezoelectric properties of single micro-rods using apiezo-response force microscope indicates that the domains of the material are arranged along its radial direction.
基金Project supported by the National Natural Science Foundation of China (Grant No.60578041)the National High Tech-nology Research and Development Program of China (Grant No.715-006-0060)
文摘The influences of the PbO-B2O3-CuV2O6 (PBC) additives on the microwave dielectric properties of (Pb0.5Ca0.5) (Fe0.5Nb0.5)O3 (PCFN) ceramics were investigated as a function of sintering temperature from 950 ℃ to 1 100 ℃. The sintering temperature of the specimens with the glass could be lowered from 1125 ℃ to 1 025℃ without the degradation of microwave dielectric properties. The microwave results showed that the dielectric constant cr was not significantly different while Qf values decreased with the increase of CuV206 content of PBC glass. For the specimens doped with PB-CV0.1 glass (81% PbO-9% B203-10% CuV2O6) and sintered at 1 025 ℃ for 3 h, the microwave dielectric properties of Qf=4 823 GHz, Cr=107.1 with TCF=+15.03 ×10^-6/℃ were obtained.