Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microsco...Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.展开更多
基金the National Natural Science Foundation of China (20376009)the Liaoning Natural Science Foundation (20032129) of China
文摘Sr2Al2SiO7:Ce^3+, Tb^3+ white emitting phosphors were fabricated using the sol-gel method. X-Ray Powder Diffraction (XRD) analysis confirmed the formation of Sr2Al2SiO7:Ce^3+, Tb^3+. Scanning Electron Microscopy (SEM) observation indicated that the microstructure of the phosphor consisted of regular fine grains with an average size of about 0.5-1 μm. Luminescence properties were analyzed by measuring the photoluminescence spectra. The Ce^3+, Tb^3+-codoped Sr2Al2SiO7 phosphors showed four main emission peaks: one at 414 nm for Ce^3+ and three at 482, 543, and 588 nm for Tb^3+. The emission spectra of the samples with different doping concentrations showed that the Tb^3+ emission was dominant because of the persistent energy transfer from Ce^3+. The decay characteristic was better than that prepared by the solid-state process in the comparable condition. The codoped phosphor displayed long persistent white phosphorescence.
文摘为研究稀土发光纳米晶的微观结构和形貌对发光性能的影响,用凝胶-微波干燥法和凝胶-烘箱干燥法制备了花状形貌的Sr3Al2O6晶体.研究了微波干燥和烘箱干燥两种不同的干燥方式对溶胶-凝胶法制备的Sr3Al2O6∶Eu2+发光粉体粒径、形貌、团聚程度、干燥时间及发光性能等的影响,结果表明采用微波干燥不仅可以大大缩短干燥所需时间,而且有利于减弱Sr3Al2O6∶Eu2+发光粉料的团聚和团聚程度,制得了颗粒分散均匀、团聚程度低、发光强度高的Sr3Al2O6∶Eu2+花状形貌粉体.研究了Sr3Al2O6∶Eu2+发光粉体的新型形貌对发光性能的影响,微波干燥法制备的均匀分散的花状形貌发光粉体发光强度高,余辉时间长达20 min.