The crystallization process of STS glass-ce-ramics was carried out in a constant temperature. The glass-ceramics still show good piezoelectric properties. The mecha-nism of orientation crystallization was investigated...The crystallization process of STS glass-ce-ramics was carried out in a constant temperature. The glass-ceramics still show good piezoelectric properties. The mecha-nism of orientation crystallization was investigated bv means of DTA.展开更多
The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-...The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.展开更多
基金This paper is aided financially by National Natural Science Foundation of China.
文摘The crystallization process of STS glass-ce-ramics was carried out in a constant temperature. The glass-ceramics still show good piezoelectric properties. The mecha-nism of orientation crystallization was investigated bv means of DTA.
基金Funded by the National Natural Science Foundation of China(No.5137217)Hubei Province Foreign Science and Technology Project(No.2016AHB027)Science and Technology Planning Project of Hubei Province(No.2014BAA136)
文摘The Sm^(3+)-doped SrO-Al2O3-SiO2(SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian(SrAl2Si2O) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm(3+)-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4 G5/2→6 Hj/2(j=5, 7, 9, 11) transitions ofSm^(3+), respectively. Besides, by increasing the crystallization temperature or the concentration ofSm^(3+), the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that theSm^(3+)-doped SAS glassceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.