Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio o...Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics.展开更多
Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio o...Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics.展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-...Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material,which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes.Recently,graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity,which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers.Here,a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2×106 A/W at the wavelength of 325 nm and∼2.4×104 A/W at 261 nm.The corresponding response time is in the order of∼ms.Compared with graphene/GaN interface junctionbased hybrid photodetectors,∼2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density.The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.展开更多
The two-dimensional electron gas at SrTiO3-based heterointerfaces has received a great deal of attention in recent years owing to their potential for the exploration of emergent physics and the next generation of elec...The two-dimensional electron gas at SrTiO3-based heterointerfaces has received a great deal of attention in recent years owing to their potential for the exploration of emergent physics and the next generation of electronics. One of the most fascinating aspects in this system is that the light, as a powerful external perturbation, can modify its transport properties. Recent studies have reported that SrTiO3-based heterointerfaces exhibit the persistent photoconductivity and can be tuned by the surface and interface engineering. These researches not only reveal the intrinsic physical mechanisms in the photoresponsive process, but also highlight the ability to be used as a tool for novel all-oxide optical devices. This review mainly contraposes the studies of photoresponse at SrTiO3-based heterointerfaces.展开更多
Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning...Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.展开更多
Ag3PO4 is found to be a highly efficient photocatalyst and receives great attention. The high activity of the photocatalyst is credited to the intrinsic electronic structure. The morphology control and nano-composite ...Ag3PO4 is found to be a highly efficient photocatalyst and receives great attention. The high activity of the photocatalyst is credited to the intrinsic electronic structure. The morphology control and nano-composite fabrication are used to improve the performance and practicability. This paper reviews the structure, properties and some theoretical aspects of Ag3PO4 single crystal. Also, the major strategies, namely the morphology control and hetero-nanostructure construction, as ways to improve the performance of Ag3PO4-based photocatalysts, are summarized with the aid of some typical instances.展开更多
Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-co...Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials展开更多
As a new organic conjugated semiconductor,graphitic carbon nitride(g-C_(3)N_(4))is emerging as a fascinating material for various photocatalytic applications due to its adjustable electronic structure,outstanding ther...As a new organic conjugated semiconductor,graphitic carbon nitride(g-C_(3)N_(4))is emerging as a fascinating material for various photocatalytic applications due to its adjustable electronic structure,outstanding thermal endurance,appealing chemical stability,low cost,and environmental friendliness.Nevertheless,unmodified bulk g-C_(3)N_(4) possesses some intrinsic limitations related to poor crystallinity,marginal visible-light harvesting,easy recombination of charge pairs,small surface area,and slow charge migration,which give rise to the low quantum efficiency of photocatalytic reactions.One efficient strategy to overcome these shortcomings is the manipulation of the microstructures of g-C_(3)N_(4).Other than the traditional structure control,mimicking the structures of creatures in nature to design and construct bio-inspired structures is a promising approach to improve the photocatalytic performance of g-C_(3)N_(4) and even g-C_(3)N_(4)-based systems.This review summarizes the recent advances of the traditional structure-control of g-C_(3)N_(4)-based systems,and bio-inspired synthesis of g-C_(3)N_(4)-based systems from two aspects of structural bionics and functional bionics.Furthermore,the fundamentals of bio-inspired design and fabrication of g-C_(3)N_(4)-based systems are introduced in detail.Additionally,the different theoretical calculations,diverse photocatalytic applications and various modification strategies of bio-inspired structured g-C_(3)N_(4)-based systems are recapped.We believe that this work will be a guiding star for future research in the new field of biomimetic photocatalysis.展开更多
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ...In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.展开更多
A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roas...A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.展开更多
The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropr...The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.展开更多
Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric...Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices.展开更多
Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/...Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.展开更多
Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature wer...Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.展开更多
The low-viscosity FeCl_(3)-based ionic liquids(ILs)prepared from the interaction of anhydrous FeCl_(3) and alkyl imidazolium bromide([1-alkyl-3-methyl-imidazolium]Br,alkyl=ethyl,butyl,hexyl,octyl)are highly effective ...The low-viscosity FeCl_(3)-based ionic liquids(ILs)prepared from the interaction of anhydrous FeCl_(3) and alkyl imidazolium bromide([1-alkyl-3-methyl-imidazolium]Br,alkyl=ethyl,butyl,hexyl,octyl)are highly effective for the denitrogenation of model oil containing quinoline or indole.The results indicate that the chain length of the alkyl group on the imidazolium cation has little influence on the N-extraction efficiency.With the selected IL[Bmim]Br/FeCl_(3),up to 99.1%of N-extraction efficiency from model oil containing quinoline can be attained at an extraction temperature of 30°C with an IL/oil mass ratio of 1/7 and an extraction time of 30 min.The indole extraction efficiency reaches 98.9%at an IL/oil mass ratio of 1:1.Moreover,the quinoline extraction efficiency remains as high as 92.3%after the IL has been recycled four times.展开更多
The evolution of lead halide perovskites used for X-ray imaging scintillators has been facilitated by the development of solution-processable semiconductors characterized by large-area,flexible,fast photoresponse.The ...The evolution of lead halide perovskites used for X-ray imaging scintillators has been facilitated by the development of solution-processable semiconductors characterized by large-area,flexible,fast photoresponse.The stability and durability of these new perovskites are insufficient to achieve extended computed tomography scanning times with hard X-rays.In this study,we fabricated a self-assembled CsPbBr_(3)-based scintillator film with a flexible large-area uniform thickness using a new roomtemperature solution-processable method.The sensitivity and responsivity of X-ray photon conversion were quantitatively measured and showed a good linear response relationship suitable for X-ray imaging.We also demonstrated,for the first time,that the self-assembled CsPbBr_(3)-based scintillator has good stability for hard X-ray microtomography.Therefore,such an inexpensive solution-processed semiconductor easily prepared at room temperature can be used as a hard X-ray scintillator and equipped with flexible CsPbBr3-based X-ray detectors.It has great potential in three-dimensional high-resolution phase-contrast X-ray-imaging applications in biomedicine and material science because of its heavy Pb and Br atoms.展开更多
This paper reports the formation and some properties of a new class of chalcohalide glasses in the As2Tef iodide systems. The As2Te3-Pb12, As2Te3-HgI2, As2Te3-CitI and As2Te3-AgI systems can form stable bulk glasses i...This paper reports the formation and some properties of a new class of chalcohalide glasses in the As2Tef iodide systems. The As2Te3-Pb12, As2Te3-HgI2, As2Te3-CitI and As2Te3-AgI systems can form stable bulk glasses in wide composition regions ?and no bulk glass formation was found in the As2Te3-TH sys-tem. As2Te3-based glasses have glass transition tempera-展开更多
We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization b...We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.展开更多
Two new Ru(phen) -based surfactants. Ru(phen)2(phenNHCO-C(11))(PF6)2 and Ru(phen)2(phenNHCO-C(17))(PF6)2. have been designed and synthesized, whose chemical structures were characterized by means of IR. 1H NMR and MS....Two new Ru(phen) -based surfactants. Ru(phen)2(phenNHCO-C(11))(PF6)2 and Ru(phen)2(phenNHCO-C(17))(PF6)2. have been designed and synthesized, whose chemical structures were characterized by means of IR. 1H NMR and MS. Also. electrochemistry and fluorescence of them are reperted.展开更多
文摘Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics.
文摘Semiconducting SrTiO 3 based voltage sensing and dielectric ceramics were prepared by single step sintering with Li 2CO 3 SiO 2 as liquid phase additives.The effects of the content of liquid phase,the ratio of Li/Si and the sintering temperatures on properties were discussed in terms of electrical properties and microstructures of materials.The results showed thatSrTiO 3 based varistor ceramics,with 0.6 mol% Li 2CO 3 SiO 2(Li/Si=3/2) and sintered at 1 380 ℃ in graphite and N 2 reducing atomosphere,had excellent current volatage sensing and dielectric characteristics.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFF0104801 and 2018YFB0406601)the National Natural Science Foundation of China(Grant Nos.61804012 and 11721404).
文摘Strontium titanate(SrTiO3),which is a crucial perovskite oxide with a direct energy band gap of 3.2 eV,holds great promise for ultraviolet(UV)photodetection.However,the response performance of the conventional SrTiO3-based photodetectors is limited by the large relative dielectric constant of the material,which reduces the internal electric field for electron-hole pair separation to form a current collected by electrodes.Recently,graphene/semiconductor hybrid photodetectors by van-der-Waals heteroepitaxy method demonstrate ultrahigh sensitivity,which is benefit from the interface junction architecture and then prolonged lifetime of photoexcited carriers.Here,a graphene/SrTiO3 interface-based photodetector is demonstrated with an ultrahigh responsivity of 1.2×106 A/W at the wavelength of 325 nm and∼2.4×104 A/W at 261 nm.The corresponding response time is in the order of∼ms.Compared with graphene/GaN interface junctionbased hybrid photodetectors,∼2 orders of magnitude improvement of the ultrahigh responsivity originates from a gain mechanism which correlates with the large work function difference induced long photo-carrier lifetime as well as the low background carrier density.The performance of high responsivity and fast response speed facilitates SrTiO3 material for further efforts seeking practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572222 and 11604265)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University,China(Grant No.CX201836)
文摘The two-dimensional electron gas at SrTiO3-based heterointerfaces has received a great deal of attention in recent years owing to their potential for the exploration of emergent physics and the next generation of electronics. One of the most fascinating aspects in this system is that the light, as a powerful external perturbation, can modify its transport properties. Recent studies have reported that SrTiO3-based heterointerfaces exhibit the persistent photoconductivity and can be tuned by the surface and interface engineering. These researches not only reveal the intrinsic physical mechanisms in the photoresponsive process, but also highlight the ability to be used as a tool for novel all-oxide optical devices. This review mainly contraposes the studies of photoresponse at SrTiO3-based heterointerfaces.
基金Project (090414185) supported by the Natural Science Foundation of Anhui Province, China
文摘Effects of VC/Cr3C2 on the microstructure and mechanical properties of Ti(C,N)-based cermets were studied. The microstructure was investigated by means of optical microscopy, X-ray diffractometry as well as scanning electron microscopy in combination with energy dispersive spectrometry. Mechanical properties, such as transverse rupture strength, hardness and fracture toughness, were measured. The results show that there are black core-grey rim structure and white core-grey rim structure in the microstructure. The grains become fine due to the VC/Cr3C2, and the grains of cermet added with 0.75VC/0.25Cr3C2 are refined most remarkably. The black core becomes finer with the increase of VC addition and rim phase becomes thicker with the decrease of Cr3C2 addition. The porosity increases with the increase of VC addition in VC/Cr3C2. Compared with the cermet free of VC/Cr3C2, the transverse rupture strength and hardness of cermets with VC/Cr3C2 are both improved, and the maximum values are both found for the cermet with 0.25VC/0.75Cr3C2. The fracture toughness can be effectively promoted by adding VC/Cr3C2 with an appropriate ratio of VC to Cr3C2, and the maximum value is found for the cermet with 0.5VC/0.5Cr3C2.
文摘Ag3PO4 is found to be a highly efficient photocatalyst and receives great attention. The high activity of the photocatalyst is credited to the intrinsic electronic structure. The morphology control and nano-composite fabrication are used to improve the performance and practicability. This paper reviews the structure, properties and some theoretical aspects of Ag3PO4 single crystal. Also, the major strategies, namely the morphology control and hetero-nanostructure construction, as ways to improve the performance of Ag3PO4-based photocatalysts, are summarized with the aid of some typical instances.
基金Project supported by the Australian Research CouncilZhi-Gang Chen thanks the USQ start-up grantstrategic research grant
文摘Thermoelectric materials,enabling the directing conversion between heat and electricity,are one of the promising candidates for overcoming environmental pollution and the upcoming energy shortage caused by the over-consumption of fossil fuels.Bi2Te3-based alloys are the classical thermoelectric materials working near room temperature.Due to the intensive theoretical investigations and experimental demonstrations,significant progress has been achieved to enhance the thermoelectric performance of Bi2Te3-based thermoelectric materials.In this review,we first explored the fundamentals of thermoelectric effect and derived the equations for thermoelectric properties.On this basis,we studied the effect of material parameters on thermoelectric properties.Then,we analyzed the features of Bi2Te3-based thermoelectric materials,including the lattice defects,anisotropic behavior and the strong bipolar conduction at relatively high temperature.Then we accordingly summarized the strategies for enhancing the thermoelectric performance,including point defect engineering,texture alignment,and band gap enlargement.Moreover,we highlighted the progress in decreasing thermal conductivity using nanostructures fabricated by solution grown method,ball milling,and melt spinning.Lastly,we employed modeling analysis to uncover the principles of anisotropy behavior and the achieved enhancement in Bi2Te3,which will enlighten the enhancement of thermoelectric performance in broader materials
文摘As a new organic conjugated semiconductor,graphitic carbon nitride(g-C_(3)N_(4))is emerging as a fascinating material for various photocatalytic applications due to its adjustable electronic structure,outstanding thermal endurance,appealing chemical stability,low cost,and environmental friendliness.Nevertheless,unmodified bulk g-C_(3)N_(4) possesses some intrinsic limitations related to poor crystallinity,marginal visible-light harvesting,easy recombination of charge pairs,small surface area,and slow charge migration,which give rise to the low quantum efficiency of photocatalytic reactions.One efficient strategy to overcome these shortcomings is the manipulation of the microstructures of g-C_(3)N_(4).Other than the traditional structure control,mimicking the structures of creatures in nature to design and construct bio-inspired structures is a promising approach to improve the photocatalytic performance of g-C_(3)N_(4) and even g-C_(3)N_(4)-based systems.This review summarizes the recent advances of the traditional structure-control of g-C_(3)N_(4)-based systems,and bio-inspired synthesis of g-C_(3)N_(4)-based systems from two aspects of structural bionics and functional bionics.Furthermore,the fundamentals of bio-inspired design and fabrication of g-C_(3)N_(4)-based systems are introduced in detail.Additionally,the different theoretical calculations,diverse photocatalytic applications and various modification strategies of bio-inspired structured g-C_(3)N_(4)-based systems are recapped.We believe that this work will be a guiding star for future research in the new field of biomimetic photocatalysis.
基金Supported by National Natural Science Foundation of China(Grant No.51175305)
文摘In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool.
基金Project(2003 UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province
文摘A new technology was developed to recover multiple valuable elements from the spent Al2O3-based catalyst by X-ray phase analysis and exploratory experiments. The experimental results show that in the condition of roasting temperature of 750℃ and roasting time of 30 min, molar ratio of Na2O to Al2O3 of 1.2, the leaching rates of alumina, vanadium and molybdenum in the spent catalyst are 97.2%, 95.8% and 98.9%, respectively. Vanadium and molybdenum in sodium aluminate solution can be recovered by precipitators A and B, and the precipitation rates of vanadium and molybdenum are 94.8% and 92.6%. Al(OH)3 was prepared from sodium aluminate solution in the carbonation decomposition process, and the purity of Al2O3 is 99.9% after calcination, the recovery of alumina reaches 90.6% in the whole process; the Ni-Co concentrate was leached by sulfuric acid, a nickel recovery of 98.2% and cobalt recovery over 98.5% can be obtained under the experimental condition of 30% H2SO4, 80℃, reaction time 4 h, mass ratio of liquid to solid 8, stirring rate 800r/min.
基金This work was supported by National Basic Research Program of China (No.2002CB312105)Key National Natural Science Foundation of China Project on Digital Olympic Museum(No.60533080).
文摘The emergence of high performance 3D graphics cards has opened the way to PC clusters for high performance multi- display environment. In order to exploit the rendering ability of PC clusters, we should design appropriate parallel rendering algorithms and parallel graphics library interfaces. Due to the rapid development of Direct3D, we bring forward DPGL, the Direct3D9-based parallel graphics library in D3DPR parallel rendering system, which implements Direct3D9 interfaces to support existing Direct3D9 application parallelization with no modification. Based on the parallelism analysis of Direct3D9 rendering pipeline, we briefly introduce D3DPR parallel rendering system. DPGL is the fundamental component of D3DPR. After presenting DPGL three layers architecture, we discuss the rendering resource interception and management. Finally, we describe the design and implementation of DPGL in detail, including rendering command interception layer, rendering command interpretation layer and rendering resource parallelization layer.
文摘Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices of different thicknesses are prepared on the silicon dioxide substrates by magnetron sputtering technique and thermally annealed at 573 K for 30 min. Thermoelectric(TE)measurements indicate that optimal thickness and thickness ratio improve the TE performance of Bi_2Te_3 thin films and GeTe/B_2Te_3 superlattices, respectively. High TE performances with figure-of-merit(ZT) values as high as 1.32 and 1.56 are achieved at 443 K for 30 nm and 50 nm Bi_2Te_3 thin films, respectively. These ZT values are higher than those of p-type Bi_2Te_3 alloys as reported. Relatively high ZT of the GeTe/B_2Te_3 superlattices at 300-380 K were 0.62-0.76. The achieved high ZT value may be attributed to the unique nano-and microstructures of the films,which increase phonon scattering and reduce thermal conductivity. The results indicate that Bi_2Te_3-based thin films can serve as high-performance materials for applications in TE devices.
基金Supported by the National Natural Science Foundation of China under Grant No 616340084the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2014101+1 种基金the International Cooperation Project of Chinese Academy of Sciencesthe Austrian-Chinese Cooperative R&D Projects under Grant No 172511KYSB20150006
文摘Because of the discrete charge storage mechanism, charge trapping memory(CTM) technique is a good candidate for aerospace and military missions. The total ionization dose(TID) effects on CTM cells with Al2O3/HfO2/Al2O3(AHA) high-k gate stack structure under in-situ 10 keV x-rays are studied. The C-V characteristics at different radiation doses demonstrate that charge stored in the device continues to be leaked away during the irradiation,thereby inducing the shift of flat band voltage(V(fb)). The dc memory window shows insignificant changes, suggesting the existence of good P/E ability. Furthermore, the physical mechanisms of TID induced radiation damages in AHA-based CTM are analyzed.
文摘Solid ceramic electrolyte materials (Bi_2O_3)_(0.75)(Y_2O_3)_(0.25) and(Bi_2O_3)_(0.65)(Gd_2O_3 )_(0.35)were synthesized.Their crystal structure, XPS spectra and the change of ionic conductivity versus temperature were measured.A Bi_2O_3-based rare earth solid electrolyte fuel cell with ZrO_2-Y_2O_3 protection film was made.
基金The authors are grateful for financial support from the Doctoral Research Funds of Liaoning Petrochemical University(2019×JJ-006).
文摘The low-viscosity FeCl_(3)-based ionic liquids(ILs)prepared from the interaction of anhydrous FeCl_(3) and alkyl imidazolium bromide([1-alkyl-3-methyl-imidazolium]Br,alkyl=ethyl,butyl,hexyl,octyl)are highly effective for the denitrogenation of model oil containing quinoline or indole.The results indicate that the chain length of the alkyl group on the imidazolium cation has little influence on the N-extraction efficiency.With the selected IL[Bmim]Br/FeCl_(3),up to 99.1%of N-extraction efficiency from model oil containing quinoline can be attained at an extraction temperature of 30°C with an IL/oil mass ratio of 1/7 and an extraction time of 30 min.The indole extraction efficiency reaches 98.9%at an IL/oil mass ratio of 1:1.Moreover,the quinoline extraction efficiency remains as high as 92.3%after the IL has been recycled four times.
基金supported by National Natural Science Foundation of China (No. 12175127)Natural Science Foundation of Shandong Province,China (No. ZR2020MA088)
文摘The evolution of lead halide perovskites used for X-ray imaging scintillators has been facilitated by the development of solution-processable semiconductors characterized by large-area,flexible,fast photoresponse.The stability and durability of these new perovskites are insufficient to achieve extended computed tomography scanning times with hard X-rays.In this study,we fabricated a self-assembled CsPbBr_(3)-based scintillator film with a flexible large-area uniform thickness using a new roomtemperature solution-processable method.The sensitivity and responsivity of X-ray photon conversion were quantitatively measured and showed a good linear response relationship suitable for X-ray imaging.We also demonstrated,for the first time,that the self-assembled CsPbBr_(3)-based scintillator has good stability for hard X-ray microtomography.Therefore,such an inexpensive solution-processed semiconductor easily prepared at room temperature can be used as a hard X-ray scintillator and equipped with flexible CsPbBr3-based X-ray detectors.It has great potential in three-dimensional high-resolution phase-contrast X-ray-imaging applications in biomedicine and material science because of its heavy Pb and Br atoms.
文摘This paper reports the formation and some properties of a new class of chalcohalide glasses in the As2Tef iodide systems. The As2Te3-Pb12, As2Te3-HgI2, As2Te3-CitI and As2Te3-AgI systems can form stable bulk glasses in wide composition regions ?and no bulk glass formation was found in the As2Te3-TH sys-tem. As2Te3-based glasses have glass transition tempera-
基金Supported by the National Natural Science Foundation of China under Grant No 11304316the Ministry of Science and Technology of China under Grant No 2011YQ130018the Department of Science and Technology of Yunnan Province,and the Chinese Academy of Sciences
文摘We develop a tractable theoretical model to investigate the thermoelectric (TE) transport properties of surface states in topological insulator thin films (TITFs) of Bi2Sea at room temperature. The hybridization between top and bottom surface states in the TITF plays a significant role. With the increasing hybridization-induced surface gap, the electrical conductivity and electron thermal conductivity decrease while the Seebeck coefficient increases. This is due to the metal-semiconductor transition induced by the surface-state hybridization. Based on these TE transport coefficients, the TE figure-of-merit ZT is evaluated. It is shown that ZT can be greatly improved by the surface-state hybridization. Our theoretical results are pertinent to the exploration of the TE transport properties of surface states in TITFs and to the potential application of Bi2Sea-based TITFs as high-performance TE materials and devices.
文摘Two new Ru(phen) -based surfactants. Ru(phen)2(phenNHCO-C(11))(PF6)2 and Ru(phen)2(phenNHCO-C(17))(PF6)2. have been designed and synthesized, whose chemical structures were characterized by means of IR. 1H NMR and MS. Also. electrochemistry and fluorescence of them are reperted.