期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Mechanical Behavior and Numerical Simulation of an Ancient Underground Rock Mass under Impact Loading
1
作者 Baoping Zou Zhiping Liu +2 位作者 Weifeng Jin Haonan Ding Zhanyou Luo 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期517-539,共23页
To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynam... To study the dynamic mechanical properties of tuff under different environmental conditions,the tuff from an ancient quarry in Shepan Island was prepared.The impact damage to the rock was tested using a triaxial dynamic impact mechanical testing system(TDIMTS)with different ground stresses,temperatures,and groundwater pressures.The time-strain relationship,dynamic stress-strain relationship,energy dissipation law,energy-peak strain relationship,and the impact damage pattern of the tuff specimens under impact air pressures were investigated.The TDIMTS experiment on ancient underground rock mass under impact loading was also simulated using the finite element analysis software LS-DYNA based on the Holmquist-Johnson-Cook(HJC)material model.The dynamic failure process,failure pattern and peak stress of tuff specimen were calculated.The simulation results obtained using the above methods were in good agreement with the experimental results.The results of the dynamic experiment show that with the same local stress,groundwater pressure,and temperature,the damage to the tuff specimens caused by blasting and quarrying disturbances gradually increases as the impact pressure increases.Under the same local stress,groundwater pressure,and temperature,the energy required to rupture the tuffs in ancient underground caverns is relatively small if the impact pressure is low accordingly,but as the impact pressure increases,the damage to the tuff caused by quarrying disturbance gradually increases.The damage gradually increases and the degree of damage to the tuff and the strain energy exhibit asymptotic growth when the tuff specimens are subjected to the greater strain energy,increasing the degree of rupturing of the tuff.In addition,the average crushing size decreases with increasing strain energy.By comparing the simulation results with the experimental results,it was found that the HJC model reflected the dynamic impact performance of tuff specimen,and the simulation results showed an evident strain rate effect.These results of this study can offer some guidance and theoretical support for the stability evaluation,protection,and safe operation of the ancient underground caverns in future. 展开更多
关键词 Ancient underground caverns numerical simulation thermal-hydraulic-mechanical coupling dynamic impact TUFF stability of surrounding rock
下载PDF
Geological conditions and key rock mechanics issues in the Western Route of South-to-North Water Transfer Project 被引量:2
2
作者 XuechaoWang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第3期234-243,共10页
In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel... In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel boring machine (TBM). The classification standard of surrounding rocks is put forward on the basis of physical simulations and engineering practices. Damage, deformation and evolution of surrounding rocks induced by TBM excavation are discussed. Meanwhile, the long-term deformation mechanisms and stability of surrounding rocks are also studied. On this basis, a three-dimensional constitutive model for interbedded sandstone slate and a fiat shell-joint element-foundation system for calculating internal forces of segment lining are established. The deformation features of surrounding rocks of deep and steep interbedded sandstone slate and their influences on internal forces of segment lining are presented. Finally, the design methods of segment lining constructed in deep and steep flysch are proposed. 展开更多
关键词 the Western Route of South-to-North Water Transfer Project rock mechanics issues classification of surrounding rocks stability of surrounding rocks excavation-induced damage lining design
下载PDF
Key rock mechanical problems of underground powerhouse in Shuibuya hydropower station 被引量:2
3
作者 Aiqing Wu1,Qigui Yang2,Xiuli Ding1,Huoming Zhou1,Bo Lu1 1 Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources,Yangtze River Scientific Research Institute,Wuhan 430010,China 2 Changjiang Institute of Survey,Planning,Design and Research,Wuhan,430010,China 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第1期64-72,共9页
The complicated rock structures and the stability of surrounding rocks of the underground powerhouse were the key rock mechanical problems in Shuibuya hydropower station.In order to overcome the related rock mechanica... The complicated rock structures and the stability of surrounding rocks of the underground powerhouse were the key rock mechanical problems in Shuibuya hydropower station.In order to overcome the related rock mechanical problems encountered during its construction,a comprehensive research was carried out for the underground powerhouse in Shuibuya hydropower station based on a detailed geological survey.It covers the investigations on the initial in-situ stress distribution features,rock mechanical properties,engineering rock mass classifications by different methods,numerical modeling for stability and support analysis,proper measures for rock excavation and support.The results show that the rock excavations of the underground powerhouse under the given geological conditions can be controlled effectively.Some measures,suggested by the designers,are proved to be rational and effective.These measures mainly consist of:(1) the soft rock replacements by concrete in local area below the crane beam,(2) the shotcrete and reinforcement by rock bolts and anchor cables in surrounding rocks,and (3) 2 m concrete placement on the rock bench between adjacent tailrace tubes.The engineering practice shows that the treated surrounding rocks have a good overall stability.The deformation behaviors observed by safety equipments are within the designing limits.The research conclusions on the related rock mechanical problems,prior to the underground powerhouse excavations,are reliable. 展开更多
关键词 Shuibuya hydropower station underground powerhouse stability of surrounding rocks rock excavation and support soft rock replacement
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部