By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+...By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].展开更多
In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2...In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2 +p + 1)(p- 1) and p ≥ 7 is a prime number. This article generalizes the result and proves the existence of a new nontrivial family of filtration s + 6 in the stable homotopy groups of spheres πt1-8-6S which is represented by bygoγ^s+3 ∈ Ext^s+6+t1Atl (Zp, Zp) in the Adams spectral sequence, where n≥ 4, 0 ≤ s 〈 p - 4, t1 = 2p^n(p- 1) + 2(p- 1)((s + 3)p^2 + (s + 3)p + (s + 3)) + s.展开更多
Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we ...Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we prove that for p ≥ 7, n ≥ 4 and $3 \leqslant s < p - 1, h_0 b_{n - 1} \tilde \gamma _s \in Ext_A^{s + 3,p^n q + sp^2 q + (s - 1)pq + (s - 1)q + s - 3} (Z_p ,Z_p )$ survives to E∞ in the Adams spectral sequence, where q = 2(p — 1).展开更多
This paper proves the existence of an order p element in the stable homotopy group of sphere spectrum of degree p^nq +p^mq + q- 4 and a nontrivial element in the stable homotopy group of Moore spectum of degree p^nq...This paper proves the existence of an order p element in the stable homotopy group of sphere spectrum of degree p^nq +p^mq + q- 4 and a nontrivial element in the stable homotopy group of Moore spectum of degree p^nq + p^mq + q - 3 which are represented by h0(hmbn-1 - hnbm-1) and ie(hohnhm) in the E2-terms of the Adams spectral sequence respectively, where p ≥ 7 is a prime, n ≥ m + 2 ≥ 4, q = 2(p - 1).展开更多
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper cons...Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres πp^nq+2pq+q-3S which isof order p and is represented by kohn ∈ ExtA^3,P^nq+2pq+q(Zp,Zp) in the Adams spectral sequence, wherep 〉 5 is an odd prime, n ≥3 and q = 2(p-1). In the course of the proof, a new family of homotopy elements in πp^nq+(p+1)q-1V(1) which is represented by β*i'*i*(hn) ∈ ExtA^2,pnq+(p+1)q+1 (H^*V(1), Zp) in the Adams sequence is detected.展开更多
Let p ≥ 7 be an odd prime. Based on the Toda bracket 〈α1β1^p-1, α1β1,p, γs〉, the authors show that the relation α1β1^P-1h2,0γs= βp/p-1γ/s holds. As a resulL they can obtain α1β1^ph2,0γs= 0 ∈ π*(S^0...Let p ≥ 7 be an odd prime. Based on the Toda bracket 〈α1β1^p-1, α1β1,p, γs〉, the authors show that the relation α1β1^P-1h2,0γs= βp/p-1γ/s holds. As a resulL they can obtain α1β1^ph2,0γs= 0 ∈ π*(S^0) for 2 ≤ s ≤ p - 2, even though α1h2,0γs and β1α1h2,0γs are not trivial. They also prove that β1^p-1 α1h2,0γ3 is nontrivial in π*(S^0) and conjecture β1^p-1 α1h2,0γs is nontrivial in π*(S^0) for 3 ≤s ≤ p - 2. Moreover, it is known that βp/p-1γ3 = 0 ∈ EXtBP*Bp^5,*(BP*, BP*), but βp/p-1γ3 is nontrivial in π*(S^0) and represents the element β1^p-1α1h2,0γ3.展开更多
In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable hom...In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable homotopy groups of spheres.展开更多
首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Ad...首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).展开更多
基金supported by the National Natural Science Foundation of China (10501045, 10771105)the NCET and the Fund of the Personnel Division of Nankai University.
文摘By a method improving that of [1], the authors prove the existence of a non-trivial product of filtration, s + 6, in the stable homotopy groups of sphere, πt-6S, which is represented up to non-zero scalar by β^-s+2ho(hmbn-1 -hnbm-1) ∈ ExtA^s+6,t+s(Zp, Zp) in the Adams spectral sequence, where p ≥ 7, n ≥ m + 2 ≥ 5, q = 2(p- 1), 0 ≤ s 〈 p - 2, t= (s + 2 + (s + 2)p + p^m + p^n)q. The advantage of this method is to extend the range of s without much complicated argument as in [1].
基金Supported by the National Natural Science Foundation of China (1051045)the Youth Project of Tianyuan Foundation of China (10426028)the China Postdoctoral,Science Foundation and Fund of the Personnel Division of Nankai University
文摘In the year 2002, Lin detected a nontrivial family in the stable homotopy groups of spheres ;π-6S which is represented by hngoγ^-3 ∈ Ext^6tA(Zp, Zp) in the Adams spectral sequence, where t = 2p^n(p- 1)+ 6(p^2 +p + 1)(p- 1) and p ≥ 7 is a prime number. This article generalizes the result and proves the existence of a new nontrivial family of filtration s + 6 in the stable homotopy groups of spheres πt1-8-6S which is represented by bygoγ^s+3 ∈ Ext^s+6+t1Atl (Zp, Zp) in the Adams spectral sequence, where n≥ 4, 0 ≤ s 〈 p - 4, t1 = 2p^n(p- 1) + 2(p- 1)((s + 3)p^2 + (s + 3)p + (s + 3)) + s.
基金This work was supported by the National Natural Science Foundation of China(Grant No.10171049)the Youth Project of Tianyuan Foundation(Grant No.10426028).
文摘Let A be the mod p Steenrod algebra for p an arbitrary odd prime. In 1962, Liulevicius described h i and b k in Ext* A ’*(Zp,Zp) having bigrading (1, sui— 1) and (2, 2p k+1 x(p— 1)), respectively. In this paper we prove that for p ≥ 7, n ≥ 4 and $3 \leqslant s < p - 1, h_0 b_{n - 1} \tilde \gamma _s \in Ext_A^{s + 3,p^n q + sp^2 q + (s - 1)pq + (s - 1)q + s - 3} (Z_p ,Z_p )$ survives to E∞ in the Adams spectral sequence, where q = 2(p — 1).
基金Project supported by the National Natural Science Foundation of China (No.10171049)
文摘This paper proves the existence of an order p element in the stable homotopy group of sphere spectrum of degree p^nq +p^mq + q- 4 and a nontrivial element in the stable homotopy group of Moore spectum of degree p^nq + p^mq + q - 3 which are represented by h0(hmbn-1 - hnbm-1) and ie(hohnhm) in the E2-terms of the Adams spectral sequence respectively, where p ≥ 7 is a prime, n ≥ m + 2 ≥ 4, q = 2(p - 1).
基金the National Natural Science Foundation of China(Nos.10501045,10771105)the Fund of the Personnel Division of Nankai University(No.J02017).
文摘Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres πp^nq+2pq+q-3S which isof order p and is represented by kohn ∈ ExtA^3,P^nq+2pq+q(Zp,Zp) in the Adams spectral sequence, wherep 〉 5 is an odd prime, n ≥3 and q = 2(p-1). In the course of the proof, a new family of homotopy elements in πp^nq+(p+1)q-1V(1) which is represented by β*i'*i*(hn) ∈ ExtA^2,pnq+(p+1)q+1 (H^*V(1), Zp) in the Adams sequence is detected.
基金supported by the National Natural Science Foundation of China(Nos.11071125,11261062,11471167)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120031110025)
文摘Let p ≥ 7 be an odd prime. Based on the Toda bracket 〈α1β1^p-1, α1β1,p, γs〉, the authors show that the relation α1β1^P-1h2,0γs= βp/p-1γ/s holds. As a resulL they can obtain α1β1^ph2,0γs= 0 ∈ π*(S^0) for 2 ≤ s ≤ p - 2, even though α1h2,0γs and β1α1h2,0γs are not trivial. They also prove that β1^p-1 α1h2,0γ3 is nontrivial in π*(S^0) and conjecture β1^p-1 α1h2,0γs is nontrivial in π*(S^0) for 3 ≤s ≤ p - 2. Moreover, it is known that βp/p-1γ3 = 0 ∈ EXtBP*Bp^5,*(BP*, BP*), but βp/p-1γ3 is nontrivial in π*(S^0) and represents the element β1^p-1α1h2,0γ3.
基金supported by the National Natural Science Foundation of China(Nos.12001474,12171165)Guangdong Natural Science Foundation(Nos.2020A1515011008,2021A1515010374)the“13th Five-Year”Science and Technology Project of Jilin Department of Education(No.JJKH20200508KJ)
文摘In this paper,the authors introduce a new effective method to compute the generators of the E-term of the May spectral sequence.This helps them to obtain four families of non-trivial product elements in the stable homotopy groups of spheres.
文摘首先给出了May谱序列E_1^(s,t,u)项的几个结果,然后利用这些结果和关于Ext_P^(s,t)(Z_p,Z_p)的一个估计(P为由mod p Steenrod代数A的所有循环缩减幂P^i(i≥0)生成的子代数)得出了乘积(?)t (?)g0∈Ext_A^(*,*)(Z_p,Z_p)(3≤t<p-2)在Adams谱序列的收敛性。其中g0∈Ext_A^(2,pq+2q)(Z_p,Z_p),(?)∈Ext_A^(3,p^2q+2pq)(Z_p,Z_p).
基金Supported by the National Natural Science Foundation of China(1130138611026197+2 种基金11226080)the Outstanding Youth Teacher Foundation of Tianjin(ZX110QN044)the Doctor Foundation of Tianjin Normal University(52XB1011)
基金Supported by NSFC(11301386)NSFC(11001195)+1 种基金Beiyang Elite Scholar Program of Tianjin University(0903061016)The Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry