Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep...Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.展开更多
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h...Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.展开更多
This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matchi...This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matching.The proposed method consists of a DNN-based inverse model with SAE-encoded static data and iterative updates of supervised-learning data are based on distance-based clustering schemes.DNN functions as an inverse model and results in encoded flattened data,while SAE,as a pre-trained neural network,successfully reduces dimensionality and reliably reconstructs geomodels.The iterative-learning method can improve the training data for DNN by showing the error reduction achieved with each iteration step.The proposed workflow shows the small mean absolute percentage error below 4%for all objective functions,while a typical multi-objective evolutionary algorithm fails to significantly reduce the initial population uncertainty.Iterative learning-based manyobjective history matching estimates the trends in water cuts that are not reliably included in dynamicdata matching.This confirms the proposed workflow constructs more plausible geo-models.The workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective evolutionary algorithm in the presence of geological uncertainty and varying objective functions.展开更多
Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essen...Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essential topic in business sector that finds it useful to identify the financial condition of a financial institution.At the same time,the development of the internet of things(IoT)has altered the mode of human interaction with the physical world.The IoT can be combined with the FCP model to examine the financial data from the users and perform decision making process.This paper presents a novel multi-objective squirrel search optimization algorithm with stacked autoencoder(MOSSA-SAE)model for FCP in IoT environment.The MOSSA-SAE model encompasses different subprocesses namely preprocessing,class imbalance handling,parameter tuning,and classification.Primarily,the MOSSA-SAE model allows the IoT devices such as smartphones,laptops,etc.,to collect the financial details of the users which are then transmitted to the cloud for further analysis.In addition,SMOTE technique is employed to handle class imbalance problems.The goal of MOSSA in SMOTE is to determine the oversampling rate and area of nearest neighbors of SMOTE.Besides,SAE model is utilized as a classification technique to determine the class label of the financial data.At the same time,the MOSSA is applied to appropriately select the‘weights’and‘bias’values of the SAE.An extensive experimental validation process is performed on the benchmark financial dataset and the results are examined under distinct aspects.The experimental values ensured the superior performance of the MOSSA-SAE model on the applied dataset.展开更多
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos...Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.展开更多
A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the...A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the accuracy of ensemble models are namely the high accuracy of a submodel,the diversity between subsample sets and the optimal ensemble method.This study presents an improved ensemble modeling method to improve the prediction precision and generalization capability of the model.Our proposed method first uses a bagging algorithm to generate multiple subsample sets.Second,an indicator vector is defined to describe these subsample sets.Third,subsample sets are selected on the basis of the results of agglomerative nesting clustering on indicator vectors to maximize the diversity between subsets.Subsequently,these subsample sets are placed in a stacked autoencoder for training.Finally,XGBoost algorithm,rather than the traditional simple average ensemble method,is imported to ensemble the model during modeling.Three machine learning public datasets and atmospheric column dry point dataset from a practical industrial process show that our proposed method demonstrates high precision and improved prediction ability.展开更多
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos...Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..展开更多
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop...Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach.展开更多
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s...(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.展开更多
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ...Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method.展开更多
The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic ...The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis.展开更多
In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA dat...In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification.展开更多
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc...Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.展开更多
In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciat...In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.展开更多
In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owin...In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51979253,51879245)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUGCJ1821).
文摘Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation.
文摘Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.
基金supported by the basic science research program through the National Research Foundation of Korea(NRF)(2020R1F1A1073395)the basic research project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)(GP2021-011,GP2020-031,21-3117)funded by the Ministry of Science and ICT,Korea。
文摘This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matching.The proposed method consists of a DNN-based inverse model with SAE-encoded static data and iterative updates of supervised-learning data are based on distance-based clustering schemes.DNN functions as an inverse model and results in encoded flattened data,while SAE,as a pre-trained neural network,successfully reduces dimensionality and reliably reconstructs geomodels.The iterative-learning method can improve the training data for DNN by showing the error reduction achieved with each iteration step.The proposed workflow shows the small mean absolute percentage error below 4%for all objective functions,while a typical multi-objective evolutionary algorithm fails to significantly reduce the initial population uncertainty.Iterative learning-based manyobjective history matching estimates the trends in water cuts that are not reliably included in dynamicdata matching.This confirms the proposed workflow constructs more plausible geo-models.The workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective evolutionary algorithm in the presence of geological uncertainty and varying objective functions.
文摘Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essential topic in business sector that finds it useful to identify the financial condition of a financial institution.At the same time,the development of the internet of things(IoT)has altered the mode of human interaction with the physical world.The IoT can be combined with the FCP model to examine the financial data from the users and perform decision making process.This paper presents a novel multi-objective squirrel search optimization algorithm with stacked autoencoder(MOSSA-SAE)model for FCP in IoT environment.The MOSSA-SAE model encompasses different subprocesses namely preprocessing,class imbalance handling,parameter tuning,and classification.Primarily,the MOSSA-SAE model allows the IoT devices such as smartphones,laptops,etc.,to collect the financial details of the users which are then transmitted to the cloud for further analysis.In addition,SMOTE technique is employed to handle class imbalance problems.The goal of MOSSA in SMOTE is to determine the oversampling rate and area of nearest neighbors of SMOTE.Besides,SAE model is utilized as a classification technique to determine the class label of the financial data.At the same time,the MOSSA is applied to appropriately select the‘weights’and‘bias’values of the SAE.An extensive experimental validation process is performed on the benchmark financial dataset and the results are examined under distinct aspects.The experimental values ensured the superior performance of the MOSSA-SAE model on the applied dataset.
基金This work is supported in part by the National Science Foundation of China(Grant Nos.61672392,61373038)in part by the National Key Research and Development Program of China(Grant No.2016YFC1202204).
文摘Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics.
基金The authors are grateful for the support of National Natural Science Foundation of China(21878081)Fundamental Research Funds for the Central Universities under Grant of China(222201717006)the Program of Introducing Talents of Discipline to Universities(the 111 Project)under Grant B17017.
文摘A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the accuracy of ensemble models are namely the high accuracy of a submodel,the diversity between subsample sets and the optimal ensemble method.This study presents an improved ensemble modeling method to improve the prediction precision and generalization capability of the model.Our proposed method first uses a bagging algorithm to generate multiple subsample sets.Second,an indicator vector is defined to describe these subsample sets.Third,subsample sets are selected on the basis of the results of agglomerative nesting clustering on indicator vectors to maximize the diversity between subsets.Subsequently,these subsample sets are placed in a stacked autoencoder for training.Finally,XGBoost algorithm,rather than the traditional simple average ensemble method,is imported to ensemble the model during modeling.Three machine learning public datasets and atmospheric column dry point dataset from a practical industrial process show that our proposed method demonstrates high precision and improved prediction ability.
文摘Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission..
基金This work is supported by the National Natural Science Foundation of China(Grant No.61672282)the Basic Research Program of Jiangsu Province(Grant No.BK20161491).
文摘Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach.
基金This study was supported by Royal Society International Exchanges Cost Share Award,UK(RP202G0230)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)+1 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Global Challenges Research Fund(GCRF),UK(P202PF11)。
文摘(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches.
文摘Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No.RG-1441-379 and for their technical support.
文摘The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis.
基金the National Natural Science Foundation of China(51767014),2018–2021.
文摘In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification.
基金supported by the National Natural Science Foundation of China (No.52075349)the National Natural Science Foundation of China (No.62303335)+1 种基金the Postdoctoral Researcher Program of China (No.GZC20231779)the Natural Science Foundation of Sichuan Province (No.2022NSFSC1942).
文摘Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment.
基金supported in part by the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘In the fast-evolving landscape of digital networks,the incidence of network intrusions has escalated alarmingly.Simultaneously,the crucial role of time series data in intrusion detection remains largely underappreciated,with most systems failing to capture the time-bound nuances of network traffic.This leads to compromised detection accuracy and overlooked temporal patterns.Addressing this gap,we introduce a novel SSAE-TCN-BiLSTM(STL)model that integrates time series analysis,significantly enhancing detection capabilities.Our approach reduces feature dimensionalitywith a Stacked Sparse Autoencoder(SSAE)and extracts temporally relevant features through a Temporal Convolutional Network(TCN)and Bidirectional Long Short-term Memory Network(Bi-LSTM).By meticulously adjusting time steps,we underscore the significance of temporal data in bolstering detection accuracy.On the UNSW-NB15 dataset,ourmodel achieved an F1-score of 99.49%,Accuracy of 99.43%,Precision of 99.38%,Recall of 99.60%,and an inference time of 4.24 s.For the CICDS2017 dataset,we recorded an F1-score of 99.53%,Accuracy of 99.62%,Precision of 99.27%,Recall of 99.79%,and an inference time of 5.72 s.These findings not only confirm the STL model’s superior performance but also its operational efficiency,underpinning its significance in real-world cybersecurity scenarios where rapid response is paramount.Our contribution represents a significant advance in cybersecurity,proposing a model that excels in accuracy and adaptability to the dynamic nature of network traffic,setting a new benchmark for intrusion detection systems.
基金This work was supported by the Research Deanship of Prince Sattam Bin Abdulaziz University,Al-Kharj,Saudi Arabia(Grant No.2020/01/17215).Also,the author thanks Deanship of college of computer engineering and sciences for technical support provided to complete the project successfully。
文摘In the era of Big data,learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system(IDS).Owing to the lack of accurately labeled network traffic data,many unsupervised feature representation learning models have been proposed with state-of-theart performance.Yet,these models fail to consider the classification error while learning the feature representation.Intuitively,the learnt feature representation may degrade the performance of the classification task.For the first time in the field of intrusion detection,this paper proposes an unsupervised IDS model leveraging the benefits of deep autoencoder(DAE)for learning the robust feature representation and one-class support vector machine(OCSVM)for finding the more compact decision hyperplane for intrusion detection.Specially,the proposed model defines a new unified objective function to minimize the reconstruction and classification error simultaneously.This unique contribution not only enables the model to support joint learning for feature representation and classifier training but also guides to learn the robust feature representation which can improve the discrimination ability of the classifier for intrusion detection.Three set of evaluation experiments are conducted to demonstrate the potential of the proposed model.First,the ablation evaluation on benchmark dataset,NSL-KDD validates the design decision of the proposed model.Next,the performance evaluation on recent intrusion dataset,UNSW-NB15 signifies the stable performance of the proposed model.Finally,the comparative evaluation verifies the efficacy of the proposed model against recently published state-of-the-art methods.