This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildi...The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.展开更多
With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment ...With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.展开更多
This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the in...This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.展开更多
Let F,G and H be three graphs with G■H.We call G an F-saturated graph relative to H,if there is no copy of F in G but there is a copy of F in G+e for any e∈E(H)\E(G).The F-saturation game on host graph H consists of...Let F,G and H be three graphs with G■H.We call G an F-saturated graph relative to H,if there is no copy of F in G but there is a copy of F in G+e for any e∈E(H)\E(G).The F-saturation game on host graph H consists of two players,named Max and Min,who alternately add edges of H to G such that each chosen edge avoids creating a copy of F in G,and the players continue to choose edges until G becomes F-saturated relative to H.Max wishes to maximize the length of the game,while Min wishes to minimize the process.Let sat_(g)(F,H)(resp.sat_(g)'(F,H))denote the number of edges chosen when Max(resp.when Min)starts the game and both players play optimally.In this article,we show that sat_(g)(P_(5),K_(n))=sat_(g)'(P_(5),K_(n))=n+2 for n≥15,and satg(P_(5),K_(m,n)),sat_(g)'(P_(5),K_(m,n))lie in{m+n-[m+2/4];m+n-[m-3/4]}if n≥5/2m and m≥4,respectively.展开更多
UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising te...UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.展开更多
To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of t...To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.展开更多
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
基金supported by Guangxi Power Grid Science and Technology Project(GXKJXM20222069).
文摘The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.
基金supported by the Guangxi Science and Technology Major Special Project (Project Number GUIKEAA22067079-1).
文摘With the development of renewable energy technologies such as photovoltaics and wind power,it has become a research hotspot to improve the consumption rate of new energy and reduce energy costs through the deployment of energy storage.To solve the problem of the interests of different subjects in the operation of the energy storage power stations(ESS)and the integrated energy multi-microgrid alliance(IEMA),this paper proposes the optimization operation method of the energy storage power station and the IEMA based on the Stackelberg game.In the upper layer,ESS optimizes charging and discharging decisions through a dynamic pricing mechanism.In the lower layer,IEMA optimizes the output of various energy conversion coupled devices within the IEMA,as well as energy interaction and demand response(DR),based on the energy interaction prices provided by ESS.The results demonstrate that the optimization strategy proposed in this paper not only effectively balances the benefits of the IEMA and ESS but also enhances energy consumption rates and reduces IEMA energy costs.
基金funded by the National Natural Science Foundation of China(No.U21B6001)。
文摘This paper proposes a novel impulsive thrust strategy guided by optimal continuous thrust strategy to address two-player orbital pursuit-evasion game under impulsive thrust control.The strategy seeks to enhance the interpretability of impulsive thrust strategy by integrating it within the framework of differential game in traditional continuous systems.First,this paper introduces an impulse-like constraint,with periodical changes in thrust amplitude,to characterize the impulsive thrust control.Then,the game with the impulse-like constraint is converted into the two-point boundary value problem,which is solved by the combined shooting and deep learning method proposed in this paper.Deep learning and numerical optimization are employed to obtain the guesses for unknown terminal adjoint variables and the game terminal time.Subsequently,the accurate values are solved by the shooting method to yield the optimal continuous thrust strategy with the impulse-like constraint.Finally,the shooting method is iteratively employed at each impulse decision moment to derive the impulsive thrust strategy guided by the optimal continuous thrust strategy.Numerical examples demonstrate the convergence of the combined shooting and deep learning method,even if the strongly nonlinear impulse-like constraint is introduced.The effect of the impulsive thrust strategy guided by the optimal continuous thrust strategy is also discussed.
基金supported by Beijing Natural Science Foundation(No.1244047)the National Natural Science Foundation of China(No.12171272,12161141003,12331013,12161141005)China Postdoctoral Science Foundation(No.2023M740207).
文摘Let F,G and H be three graphs with G■H.We call G an F-saturated graph relative to H,if there is no copy of F in G but there is a copy of F in G+e for any e∈E(H)\E(G).The F-saturation game on host graph H consists of two players,named Max and Min,who alternately add edges of H to G such that each chosen edge avoids creating a copy of F in G,and the players continue to choose edges until G becomes F-saturated relative to H.Max wishes to maximize the length of the game,while Min wishes to minimize the process.Let sat_(g)(F,H)(resp.sat_(g)'(F,H))denote the number of edges chosen when Max(resp.when Min)starts the game and both players play optimally.In this article,we show that sat_(g)(P_(5),K_(n))=sat_(g)'(P_(5),K_(n))=n+2 for n≥15,and satg(P_(5),K_(m,n)),sat_(g)'(P_(5),K_(m,n))lie in{m+n-[m+2/4];m+n-[m-3/4]}if n≥5/2m and m≥4,respectively.
基金This work is supported by the Jiangsu Provincial Natural Science Fund for Outstanding Young Scholars(No.BK20180028)the Natural Science Foundations of China(No.61671474)+1 种基金the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars(No.BK20170089)and in part by Postgraduate Research and Practice Innovation Program of Jiangsu Province under No.KYCX190188.
文摘UAV-assisted D2D networks can provide auxiliary communication for areas with poor communication facilities by using the characteristics of easy deployment of unmanned aerial vehicle(UAV),then it becomes a promising technology.However,the coexistence of UAV and D2D aggravates the conflict of spectrum resources.In addition,when the UAV performs the communication service,it will inevitably cause the location change,which will make the original channel allocation no longer applicable.Inspired by the influence of frequent channel switching on channel allocation,we define the communication utility as a tradeoff between the throughput and channel switching cost.In the considered model,we investigate the multi-stage hierarchical spectrum access problem with maximizing aggregate communication utilities in UAV-assisted D2D networks.In particular,due to the hierarchical feature of the considered network,we adopt Stackelberg game to formulate this spectrum access problem where both the throughput and channel switching cost are considered.We prove that the proposed game has a stable Stackelberg equilibrium(SE),and the heterogeneous network based channel allocation(HN-CA)algorithm is proposed to achieve the desired solution.Simulation results verify the validity of the proposed game and show the effectiveness of the HN-CA algorithm.
基金supported by Science and Technology Project of State Grid Hebei Electric Power Company(SGHE0000DKJS2000228)
文摘To promote the utilization of renewable energy,such as photovoltaics,this paper proposes an optimal flexibility dispatch method for demand-side resources(DSR)based on the Stackelberg game theory.First,the concept of the generalized DSR is analyzed and flexibility models for various DSR are constructed.Second,owing to the characteristics of small capacity but large-scale,an outer approximation is proposed to describe the aggregate flexibility of DSR.Then,the optimal flexibility dispatch model of DSR based on the Stackelberg game is established and a decentralized solution algorithm is designed to obtain the Stackelberg equilibrium.Finally,the actual data are utilized for the case study and the results show that,compared to the traditional centralized optimization method,the proposed optimal flexibility dispatch method can not only reduce the net load variability of the DSR aggregator but is beneficial for all DSR owners,which is more suitable for practical applications.