The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing ...The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T . The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability P sf is determined.展开更多
Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformat...Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformation.Typically,these two parameters have been determined from theoretical calculations and empirical results.However,the estimation of SFE values in Fe–Mn–C ternary systems is a longstanding debate due to the complicated nature of carbon:that is,whether the carbon doping indeed plays an important role in the formation of stacking faults;and how the amount of carbon atoms exist at grain boundaries or at internal grains with respect to the nominal carbon doping contents.Herein,the use of atom probe tomography and transmission electron microscopy(TEM)unveils the influence of carbondoping contents on the structural properties of dual-phase Fe–17 Mn–x C(x=0–1.56 at%)steels,such as carbon segregation free energy at grain boundaries,carbon concentration in grain interior,interplanar D-spacings,and mean width of intrinsic stacking faults,which are essential for SFE estimation.We next determined the Psfvalues by two different methods,viz.,reciprocal-space electron diffraction measurements and stacking fault width measurements in real-space TEM images.Then,SFEs in the Fe–17 Mn–x C systems were calculated on the basis of the generally-known SFE equations.We found that the high amount of carbon doping gives rise to the increased SFE from 8.6 to 13.5 m J/m^(2)with non-linear variation.This SFE trend varies inversely with the mean width of localized stacking faults,which pass through both other stacking faults and pre-existingε-martensite plates without much difficulty at their intersecting zones.The high amount of carbon doping acts twofold,through increasing the segregation free energy(due to more carbon at grain boundaries)and large lattice expansion(due to increased soluble carbon at internal grains).The experimental data obtained here strengthens the composition-dependent SFE maps for predicting the deformation structure and mechanical response of other carbon-doped high-Mn alloy compositions.展开更多
The change of microstructure with strain was investigated in a Fe-32Mn-5Si austenitic alloy at room temperature by X-raydiffraction profile analysis.The experimental results show that the Fe-32Mn-5Si alloy is deformed...The change of microstructure with strain was investigated in a Fe-32Mn-5Si austenitic alloy at room temperature by X-raydiffraction profile analysis.The experimental results show that the Fe-32Mn-5Si alloy is deformed by the strain—induced γ→εtransformation and the twinning except dislocation slip at room temperature.The amount of strain-induced ε-martensite,thestacking fault probability and the twinning probability all exhibit parabolic relationship with increasing strain.The stackingfault probability is higher than the twinning probability.展开更多
The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-r...The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-ray diffraction and magnetic techniques. The changes in the sub-grain size (Ds), probability of stacking fault formation (Psf) and microstrain in the material as cold rolling progressed were determined by using a modified version of the Williamson and Hall equation. A strong development of the crystallographic texture with increasing deformation was observed. Deformation-induced formation of a small fraction α'-martensite was observed, indicating that the steel also exhibits γ→α'-martensite transformation during cold rolling, which is discussed via the changes of the stacking-fault probability and the texture development during cold rolling.展开更多
The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The struc...The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth(β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.展开更多
The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstruct...The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstructural characterization of the steel by the whole X-ray pattern fitting Rietveld software, materials analysis using diffraction (MAUD), indicated that the volume fraction of αbcc-martensite increases with increasing AGS. However, the value of the stacking fault probability (Psf) does not show a large variation for samples with different values of AGS under water-quenching conditions.展开更多
The rapid solidification of Fe-17%Mn alloy was performed to investigate the influence of cooling rate on its damping performance and martensitic transformation mechanism. A proper heat treatment was also carried out t...The rapid solidification of Fe-17%Mn alloy was performed to investigate the influence of cooling rate on its damping performance and martensitic transformation mechanism. A proper heat treatment was also carried out to clarify its coupled effects with rapid solidification. The stacking fault probability and martensitic transformation temperature were determined to demonstrate their relationship with the cooling rate and the heat treatment process. With the increase of cooling rate, the volume fraction of ε-martensite increased and the stacking fault probability of ε-martensite was enhanced. The formation ofε-martensite phase was remarkable for the increase of damping capacity and microhardness. It was found that rapid solidification was beneficial for the formation of ε-martensite and the improvement of damping capacity. This effect can be facilitated by the incorporation of the heat treatment process.展开更多
文摘The stacking fault probability of CoNi alloys with different contents of Ni was measured by X ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T . The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability P sf is determined.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2020R1A4A3079417)(No.2021R1A2C4002622)by the Future Material Discovery Program of the NRFfunded by the MSIP of Korea(No.2021M3D1A1021236)。
文摘Assessing the stacking fault forming probability(P_(sf)) and stacking fault energy(SFE)in medium-or highMn base structural materials can anticipate and elucidate the microstructural evolution before and after deformation.Typically,these two parameters have been determined from theoretical calculations and empirical results.However,the estimation of SFE values in Fe–Mn–C ternary systems is a longstanding debate due to the complicated nature of carbon:that is,whether the carbon doping indeed plays an important role in the formation of stacking faults;and how the amount of carbon atoms exist at grain boundaries or at internal grains with respect to the nominal carbon doping contents.Herein,the use of atom probe tomography and transmission electron microscopy(TEM)unveils the influence of carbondoping contents on the structural properties of dual-phase Fe–17 Mn–x C(x=0–1.56 at%)steels,such as carbon segregation free energy at grain boundaries,carbon concentration in grain interior,interplanar D-spacings,and mean width of intrinsic stacking faults,which are essential for SFE estimation.We next determined the Psfvalues by two different methods,viz.,reciprocal-space electron diffraction measurements and stacking fault width measurements in real-space TEM images.Then,SFEs in the Fe–17 Mn–x C systems were calculated on the basis of the generally-known SFE equations.We found that the high amount of carbon doping gives rise to the increased SFE from 8.6 to 13.5 m J/m^(2)with non-linear variation.This SFE trend varies inversely with the mean width of localized stacking faults,which pass through both other stacking faults and pre-existingε-martensite plates without much difficulty at their intersecting zones.The high amount of carbon doping acts twofold,through increasing the segregation free energy(due to more carbon at grain boundaries)and large lattice expansion(due to increased soluble carbon at internal grains).The experimental data obtained here strengthens the composition-dependent SFE maps for predicting the deformation structure and mechanical response of other carbon-doped high-Mn alloy compositions.
基金The project was supported by the National Natural Science Foundation of China(grant No.59601007).
文摘The change of microstructure with strain was investigated in a Fe-32Mn-5Si austenitic alloy at room temperature by X-raydiffraction profile analysis.The experimental results show that the Fe-32Mn-5Si alloy is deformed by the strain—induced γ→εtransformation and the twinning except dislocation slip at room temperature.The amount of strain-induced ε-martensite,thestacking fault probability and the twinning probability all exhibit parabolic relationship with increasing strain.The stackingfault probability is higher than the twinning probability.
文摘The magnetic response, microstructural and texture changes occurring during cold rolling of a Fe-14Mn-0.64C-2.4AI-0.25Si medium stacking fault energy TWlP (twinning induced plasticity) steel have been studied by X-ray diffraction and magnetic techniques. The changes in the sub-grain size (Ds), probability of stacking fault formation (Psf) and microstrain in the material as cold rolling progressed were determined by using a modified version of the Williamson and Hall equation. A strong development of the crystallographic texture with increasing deformation was observed. Deformation-induced formation of a small fraction α'-martensite was observed, indicating that the steel also exhibits γ→α'-martensite transformation during cold rolling, which is discussed via the changes of the stacking-fault probability and the texture development during cold rolling.
文摘The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport(DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth(β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.
文摘The aim of the present work was to study the effect of austenite grain size (AGS) on the martensite formation in a high-manganese twinning-induced plasticity (TWIP) steel. The results of a quantitative microstructural characterization of the steel by the whole X-ray pattern fitting Rietveld software, materials analysis using diffraction (MAUD), indicated that the volume fraction of αbcc-martensite increases with increasing AGS. However, the value of the stacking fault probability (Psf) does not show a large variation for samples with different values of AGS under water-quenching conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52074230, 52088101 and 51871186)the Fundamental Research Funds for the Central Universities
文摘The rapid solidification of Fe-17%Mn alloy was performed to investigate the influence of cooling rate on its damping performance and martensitic transformation mechanism. A proper heat treatment was also carried out to clarify its coupled effects with rapid solidification. The stacking fault probability and martensitic transformation temperature were determined to demonstrate their relationship with the cooling rate and the heat treatment process. With the increase of cooling rate, the volume fraction of ε-martensite increased and the stacking fault probability of ε-martensite was enhanced. The formation ofε-martensite phase was remarkable for the increase of damping capacity and microhardness. It was found that rapid solidification was beneficial for the formation of ε-martensite and the improvement of damping capacity. This effect can be facilitated by the incorporation of the heat treatment process.