In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this mot...In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this motor is analyzed by computer simulation. By comparison of the tested and computed results, which are in good agreement, the dynamic model and simulative method are verified.展开更多
The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a c...The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.展开更多
Unstart is an unwanted flow phenomenon in a hypersonic inlet. When an unstart occurs, the captured airflow flowing through the engine significantly decreases with strong unsteady characteristics, which may lead to thr...Unstart is an unwanted flow phenomenon in a hypersonic inlet. When an unstart occurs, the captured airflow flowing through the engine significantly decreases with strong unsteady characteristics, which may lead to thrust loss or even combustor flameout. In this study, various bump configurations were designed to be integrated with a hypersonic inlet to improve its starting ability. A bump was defined as an integrated 3D compression surface installed upstream of the inlet entrance. The starting processes of these bump inlets were numerically simulated to investigate the effect laws and flow mechanisms of the bump parameters. Tests on bump height revealed that the starting performance could be significantly improved by increasing bump height, with the starting Mach number decreasing by 0.55 for the inlet with the highest bump. The high bump facilitates the side movement of the subsonic flow in the separation zone, which leads to a small separation bubble, thus accelerating the starting process. Further, the starting ability can be improved by designing a relatively wide bump, which results in a decline in the starting Mach number by 0.44. When the bump has the same or greater width compared with the airflow capture range, a growing spillage along the transverse direction can be formed so that the airflow in the separation bubble can be easily excluded, improving the starting ability.展开更多
文摘In this paper, by using a matrix technique, a dynamic model of high power factor induction motor with floating winding in parallel connection with capacitors is established. Then, the starting performance of this motor is analyzed by computer simulation. By comparison of the tested and computed results, which are in good agreement, the dynamic model and simulative method are verified.
文摘The performance characteristics,particularly the starting performance of direct line-fed induction motors,which are mainly influenced by the design of the rotor,are crucial considerations for end-users.It is quite a challenging issue for motor manufacturers to enhance the starting performance of existing mass-produced motors with minimal modifications and expenses.In this paper,a simple and cost-effective method to improve the starting performance of a commercial squirrel-cage induction motor(SCIM)is proposed.The influence of geometric parameters of the end-ring on the performance characteristics,including starting(locked rotor)torque,pull-up and break down torque,starting current,rotor electric parameters,current density,power losses,and efficiency have been comprehensively investigated.It has been revealed that among the other end-ring design parameters,the ring thickness has a significant effect on the performance characteristics.An optimal end-ring thickness is determined,and its performance characteristics have been compared to those of its initial counterpart.Numeric and parametric analyses have been conducted using a 2D time-stepping finite element method(FEM).The FEM results were validated using experimental measurements obtained from an 11 kW SCIM prototype.
基金supported by the National Natural Science Foundation of China (No. 12102470)the Hunan Provincial Innovation Foundation for Postgraduate (No. CX20200082), China。
文摘Unstart is an unwanted flow phenomenon in a hypersonic inlet. When an unstart occurs, the captured airflow flowing through the engine significantly decreases with strong unsteady characteristics, which may lead to thrust loss or even combustor flameout. In this study, various bump configurations were designed to be integrated with a hypersonic inlet to improve its starting ability. A bump was defined as an integrated 3D compression surface installed upstream of the inlet entrance. The starting processes of these bump inlets were numerically simulated to investigate the effect laws and flow mechanisms of the bump parameters. Tests on bump height revealed that the starting performance could be significantly improved by increasing bump height, with the starting Mach number decreasing by 0.55 for the inlet with the highest bump. The high bump facilitates the side movement of the subsonic flow in the separation zone, which leads to a small separation bubble, thus accelerating the starting process. Further, the starting ability can be improved by designing a relatively wide bump, which results in a decline in the starting Mach number by 0.44. When the bump has the same or greater width compared with the airflow capture range, a growing spillage along the transverse direction can be formed so that the airflow in the separation bubble can be easily excluded, improving the starting ability.