Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg...Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.展开更多
In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemica...In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemical models for battery state predictions.The review demonstrates that machine learning and deep learning approaches can be used to construct fast and accurate data-driven models for the prediction of battery performance.The details,advantages,and limitations of these approaches are presented,compared,and summarized.Finally,future key challenges and opportunities are discussed.展开更多
A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resi...A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.展开更多
Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal sta...Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge.展开更多
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging...The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized.展开更多
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial...The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.展开更多
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p...State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.展开更多
Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy man...Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively.展开更多
State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additio...State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery’s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.展开更多
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon...The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.展开更多
Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil f...Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.展开更多
This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The m...This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%.展开更多
In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, ...In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded.展开更多
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter...Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.展开更多
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba...A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.展开更多
Energy storage, such as lead acid batteries, is necessary for renewable energy sources’ autonomy because of their intermittent nature, which makes them more frequently used than traditional energy sources to reduce o...Energy storage, such as lead acid batteries, is necessary for renewable energy sources’ autonomy because of their intermittent nature, which makes them more frequently used than traditional energy sources to reduce operating costs. The battery storage system has to be monitored and managed to prevent serious problems such as battery overcharging, over-discharging, overheating, battery unbalancing, thermal runaway, and fire dangers. For voltage balancing between batteries in the pack throughout the charging period and the SOC estimate, a modified lossless switching mechanism is used in this research’s suggested battery management system. The OCV state of charge calculation, in the beginning, was used in conjunction with the coulomb counting approach to estimate the SOC. The results reveal that correlation factor K has an average value of 0.3 volts when VM ≥ 12 V and an average value of 0.825 when VM ≤ 12 V. The battery monitoring system revealed that voltage balancing was accomplished during the charging process in park one after 80 seconds with a SOC difference of 1.4% between Batteries 1 and 2. On the other hand, the system estimates the state of charge during the discharging process in two packs, with a maximum DOD of 10.8 V for all batteries. The project’s objectives were met since the BMS estimated SOC and achieved voltage balance.展开更多
Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery manag...Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery management systems.In recent years,lithium-ion battery SOC estimation methods based on data-driven approaches have gained significant popularity.However,these methods commonly face the issue of poor model generalization and limited robustness.To address such issues,this study proposes a closed-loop SOC estimation method based on simulated annealing-optimized support vector regression(SA-SVR)combined with minimum error entropy based extended Kalman filter(MEE-EKF)algorithm.Firstly,a probability-based SA algorithm is employed to optimize the internal parameters of the SVR,thereby enhancing the precision of original SOC estimation.Secondly,utilizing the framework of the Kalman filter,the optimized SVR results are incorporated as the measurement equation and further processed through the MEE-EKF,while the ampere-hour integral physical model serves as the state equation,effectively attenuating the measurement noise,enhancing the estimation accuracy,and improving generalization ability.The proposed method is validated through battery testing experiments conducted under three typical operating conditions and one complex and random operating condition with wide temperature variations under only one condition training.The results demonstrate that the proposed method achieves a mean absolute error below 0.60%and a root mean square error below 0.73%across all operating conditions,showcasing a significant improvement in estimation accuracy compared to the benchmark algorithms.The high precision and generalization capability of the proposed method are evident,ensuring accurate SOC estimation for electric vehicles.展开更多
This paper introduces an innovative approach to addressing a critical challenge in the electric vehicle(EV)industry—the accurate estimation of the state of charge(SOC)of EV batteries under real-world operating condit...This paper introduces an innovative approach to addressing a critical challenge in the electric vehicle(EV)industry—the accurate estimation of the state of charge(SOC)of EV batteries under real-world operating conditions.The electric mobility landscape is rapidly evolving,demanding more precise SOC estimation methods to improve range prediction accuracy and battery management.This study applies a Random Forest(RF)machine learning algorithm to improve SOC estimation.Traditionally,SOC estimation has posed a formidable challenge,particularly in capturing the complex dependencies between various parameters and SOC values during dynamic driving conditions.Previous methods,including the Extreme Learning Machine(ELM),have exhibited limitations in providing the accuracy and robustness required for practical EV applications.In contrast,this research introduces the RF model,for SOC estimation approach that excels in real-world scenarios.By leveraging decision trees and ensemble learning,the RF model forms resilient relationships between input parameters,such as voltage,current,ambient temperature,and battery temperatures,and SOC values.This unique approach empowers the model to deliver precise and consistent SOC estimates across diverse driving conditions.Comprehensive comparative analyses showcase the superiority of the RF over ELM.The RF model not only outperforms in accuracy but also demonstrates exceptional robustness and reliability,addressing the pressing needs of the EV industry.The results of this study not only underscore the potential of RF in advancing electric mobility but also suggest a promising integration of the SOC estimation approach into the battery management system of BMW i3.This integration holds the key to more efficient and dependable electric vehicle operations,marking a significant milestone in the ongoing evolution of EV technology.Importantly,the RF model demonstrates a lower Root Mean Squared Error(RMSE)of 5.902,8%compared to 6.312,7%for ELM,and a lower Mean Absolute Error(MAE)of 4.432,1%versus 5.111,2%for ELM across rigorous k-fold cross-validation testing,reaffirming its superiority in quantitative SOC estimation.展开更多
ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their applicati...ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.展开更多
State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to e...State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to estimate the SOC. The finite difference(FD) algorithm is benefit to compute the partial derivative of nonlinear function, which can reduce the linearization error generated by the extended Kalman filter(EKF). The FDEKF algorithm can reduce the computational load of controller in engineering practice without solving the Jacobian matrix. It is simple of dynamic model of lithium-ion battery to adopt a secondorder resistor-capacitor(2 RC) network, the parameters of which are identified by the HPPC. Two conditions, both constant current discharge(CCD) and urban dynamometer driving schedule(UDDS), are utilized to validate the FDEKF algorithm.Comparing convergence rate and accuracy between the FDEKF and the EKF algorithm, it can be seen that the former is a better candidate to estimate the SOC.展开更多
基金supported by the National Natural Science Foundation of China(No.U20A20310 and No.52176199)sponsored by the Program of Shanghai Academic/Technology Research Leader(No.22XD1423800)。
文摘Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems.
基金funding support from the Department of Science and Technology of Guangdong Province(2019A050510043)the Department of Science and Technology of Zhuhai City(ZH22017001200059PWC)+1 种基金the National Natural Science Foundation of China(2210050123)the China Postdoctoral Science Foundation(2021TQ0161 and 2021M691709)。
文摘In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemical models for battery state predictions.The review demonstrates that machine learning and deep learning approaches can be used to construct fast and accurate data-driven models for the prediction of battery performance.The details,advantages,and limitations of these approaches are presented,compared,and summarized.Finally,future key challenges and opportunities are discussed.
基金National Hi-tech Research Development Program of China(863 Program,No.2002AA501732)National Basic Research Program of China(973 Program,No.2007CB209707)
文摘A combined algorithm for battery state of charge (SOC) estimation is proposed to solve the critical issue of hybrid electric vehicle (HEV). To obtain a more accurate SOC, both coulomb-accumulation and battery resistance-capacitor (RC) model are weighted combined to compensate the deficiencies of individual methods. In order to solve the key issue of coulomb-accumulation, the battery thermal model is used. Based on the principle of energy conservation, the heat generated from battery charge and discharge process is converted into the equivalent electricity to calculate charge and discharge efficiency under variable current. The extended Kalman filter (EKF) as a closed loop algorithm is applied to estimate the parameters of resistance-capacitor model. The input variables do not increase much computing difficulty. The proposed combined algorithm is implemented by adjusting the weighting factor of coulomb- accumulation and resistance-capacitor model. In the end, four different methods including Ah-efficiency, Ah-Equip, RC-SOC and Combined-SOC are compared in federal testing procedure (FTP) drive cycle. The experiment results show that the proposed method has good robustness and high accuracy which is suitable for HEV application.
基金financial supports from National Key R&D Program of China (2018YFC1902200)the key technologies R&D program of Tianjin (18YFZCGX00240)key R&D Program of China Automotive Technology and Research Center Co., Ltd. (18200116)。
文摘Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge.
基金supported by research on value model and technology application of patent operation of science and technology project(52094020000U)National Natural Science Foundation of China(52177193).
文摘The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA110303)the Beijing Municipal Science & Technology Project,China (Grant No. Z111100064311001)
文摘The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle.
基金Beijing Municipal Natural Science Foundation of China(Grant No.3182035)National Natural Science Foundation of China(Grant No.51877009).
文摘State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift.
基金This work was supported by the National Key Research and Development Program of China(2017YFB0103802)the National Natural Science Foundation of China(51922006 and 51707011).
文摘Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively.
文摘State of Charge (SOC) determination is an increasingly important issue in battery technology. In addition to the immediate display of the remaining battery capacity to the user, precise knowledge of SOC exerts additional control over the charging/discharging process which in turn reduces the risk of over-voltage and gassing, which degrade the chemical composition of the electrolyte and plates. This paper describes a new approach to SOC determination for the lead-acid battery management system by combining Ah-balance with an EMF estimation algorithm, which predicts the battery’s EMF value while it is under load. The EMF estimation algorithm is based on an equivalent-circuit representation of the battery, with the parameters determined from a pulse test performed on the battery and a curve-fitting algorithm by means of least-square regression. The whole battery cycle is classified into seven states where the SOC is estimated with the Ah-balance method and the proposed EMF based algorithm. Laboratory tests and results are described in detail in the paper.
基金the financial support from the China Scholarship Council(CSC)(No.202207550010)。
文摘The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required.
基金by Department of Science and Technology,New Delhi(Indo-Norway consortium)project entitled“Integrated Renewable Resources and Storage Operation and Management”program.
文摘Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions.
基金Open Fund Project of State Key Laboratory of Large Electric Transmission Systems and Equipment Technology(No.SKLLDJ042017005)。
文摘This paper presents a more accurate battery state of charge(SOC)and state of health(SOH)estimation method.A lithium battery is represented by a nonlinear two-order resistance-capacitance equivalent circuit model.The model parameters are estimated by searching least square error optimization algorithm.Precisely defined by this method,the model parameters allow to accurately determine the capacity of the battery,which in turn allows to specify the SOC prediction value used as a basis for the SOH value.Application of the extended Kalman filter(EKF)removes the need of prior known initial SOC,and applying the fuzzy logic helps to eliminate the measurement and process noise.Simulation results obtained during the urban dynamometer driving schedule(UDDS)test show that the maximum error in estimation of the battery SOC is 0.66%.Battery capacity is estimate by offline updated Kalman filter,and then SOH will be predicted.The maximum error in estimation of the battery capacity is 1.55%.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61004048 and 61201010)
文摘In order to improve the accuracy of the battery state of charge(SOC) estimation, in this paper we take a lithiumion battery as an example to study the adaptive Kalman filter based SOC estimation algorithm. Firstly, the second-order battery system model is introduced. Meanwhile, the temperature and charge rate are introduced into the model. Then, the temperature and the charge rate are adopted to estimate the battery SOC, with the help of the parameters of an adaptive Kalman filter based estimation algorithm model. Afterwards, it is verified by the numerical simulation that in the ideal case, the accuracy of SOC estimation can be enhanced by adding two elements, namely, the temperature and charge rate.Finally, the actual road conditions are simulated with ADVISOR, and the simulation results show that the proposed method improves the accuracy of battery SOC estimation under actual road conditions. Thus, its application scope in engineering is greatly expanded.
基金supported by the BK21 FOUR project funded by the Ministry of Education,Korea(4199990113966).
文摘Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate.
文摘A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings.
文摘Energy storage, such as lead acid batteries, is necessary for renewable energy sources’ autonomy because of their intermittent nature, which makes them more frequently used than traditional energy sources to reduce operating costs. The battery storage system has to be monitored and managed to prevent serious problems such as battery overcharging, over-discharging, overheating, battery unbalancing, thermal runaway, and fire dangers. For voltage balancing between batteries in the pack throughout the charging period and the SOC estimate, a modified lossless switching mechanism is used in this research’s suggested battery management system. The OCV state of charge calculation, in the beginning, was used in conjunction with the coulomb counting approach to estimate the SOC. The results reveal that correlation factor K has an average value of 0.3 volts when VM ≥ 12 V and an average value of 0.825 when VM ≤ 12 V. The battery monitoring system revealed that voltage balancing was accomplished during the charging process in park one after 80 seconds with a SOC difference of 1.4% between Batteries 1 and 2. On the other hand, the system estimates the state of charge during the discharging process in two packs, with a maximum DOD of 10.8 V for all batteries. The project’s objectives were met since the BMS estimated SOC and achieved voltage balance.
基金Key Research and Development Program of Shaanxi Province(2023-GHYB-05 and 2023-YBSF-104).
文摘Accurate state of charge(SOC)estimation of lithium-ion batteries is a fundamental prerequisite for ensuring the normal and safe operation of electric vehicles,and it is also a key technology component in battery management systems.In recent years,lithium-ion battery SOC estimation methods based on data-driven approaches have gained significant popularity.However,these methods commonly face the issue of poor model generalization and limited robustness.To address such issues,this study proposes a closed-loop SOC estimation method based on simulated annealing-optimized support vector regression(SA-SVR)combined with minimum error entropy based extended Kalman filter(MEE-EKF)algorithm.Firstly,a probability-based SA algorithm is employed to optimize the internal parameters of the SVR,thereby enhancing the precision of original SOC estimation.Secondly,utilizing the framework of the Kalman filter,the optimized SVR results are incorporated as the measurement equation and further processed through the MEE-EKF,while the ampere-hour integral physical model serves as the state equation,effectively attenuating the measurement noise,enhancing the estimation accuracy,and improving generalization ability.The proposed method is validated through battery testing experiments conducted under three typical operating conditions and one complex and random operating condition with wide temperature variations under only one condition training.The results demonstrate that the proposed method achieves a mean absolute error below 0.60%and a root mean square error below 0.73%across all operating conditions,showcasing a significant improvement in estimation accuracy compared to the benchmark algorithms.The high precision and generalization capability of the proposed method are evident,ensuring accurate SOC estimation for electric vehicles.
基金supported by the Ministry of Higher Education(MoHE)Malaysia under the Fundamental Research Grant Scheme(FRGS/1/2022/ICT04/UMP/02/1)Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)under Distinguished Research Grant(#RDU223003).
文摘This paper introduces an innovative approach to addressing a critical challenge in the electric vehicle(EV)industry—the accurate estimation of the state of charge(SOC)of EV batteries under real-world operating conditions.The electric mobility landscape is rapidly evolving,demanding more precise SOC estimation methods to improve range prediction accuracy and battery management.This study applies a Random Forest(RF)machine learning algorithm to improve SOC estimation.Traditionally,SOC estimation has posed a formidable challenge,particularly in capturing the complex dependencies between various parameters and SOC values during dynamic driving conditions.Previous methods,including the Extreme Learning Machine(ELM),have exhibited limitations in providing the accuracy and robustness required for practical EV applications.In contrast,this research introduces the RF model,for SOC estimation approach that excels in real-world scenarios.By leveraging decision trees and ensemble learning,the RF model forms resilient relationships between input parameters,such as voltage,current,ambient temperature,and battery temperatures,and SOC values.This unique approach empowers the model to deliver precise and consistent SOC estimates across diverse driving conditions.Comprehensive comparative analyses showcase the superiority of the RF over ELM.The RF model not only outperforms in accuracy but also demonstrates exceptional robustness and reliability,addressing the pressing needs of the EV industry.The results of this study not only underscore the potential of RF in advancing electric mobility but also suggest a promising integration of the SOC estimation approach into the battery management system of BMW i3.This integration holds the key to more efficient and dependable electric vehicle operations,marking a significant milestone in the ongoing evolution of EV technology.Importantly,the RF model demonstrates a lower Root Mean Squared Error(RMSE)of 5.902,8%compared to 6.312,7%for ELM,and a lower Mean Absolute Error(MAE)of 4.432,1%versus 5.111,2%for ELM across rigorous k-fold cross-validation testing,reaffirming its superiority in quantitative SOC estimation.
基金supported by the Key Science and Technology Project of China Southern Power Grid Corporation:Sodium-ion Battery Energy Storage System Multi-Scenario Demonstration Application Project-Topic 2 Research on Safety Application Technology of Sodium-ion Battery Energy Storage(STKJXM 20210104)the National Natural Science Foundation of China under Grant 52307233.
文摘ABSTRACT The accurate state-of-charge(SOC)estimation of sodium-ion batteries is the basis for their efficient application.In this paper,a new SOC estimation method suitable for sodium-ion batteries and their application conditions is proposed,which considers the combination of open circuit voltage(OCV)and internal resistance correction.First,the optimal order of equivalent circuit model is analyzed and selected,and the monotonic and stable mapping relationships between OCV and SOC,as well as between ohmic internal resistance and SOC are determined.Then,a joint estimation algorithm for battery model parameters and SOC is estab-lished,and a joint SOC correction strategy based on OCV and ohmic internal resistance is established.The test results show that OCV correction is reliable when polarization is small,that the ohmic internal resistance correction is reliable when the current fluctuation is large,and that the maximum absolute error of SOC estimation of the proposed method is not more than 2.6%.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0103100)the Science and Technology Special Project of Anhui Province(Grant No.18030901063)
文摘State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to estimate the SOC. The finite difference(FD) algorithm is benefit to compute the partial derivative of nonlinear function, which can reduce the linearization error generated by the extended Kalman filter(EKF). The FDEKF algorithm can reduce the computational load of controller in engineering practice without solving the Jacobian matrix. It is simple of dynamic model of lithium-ion battery to adopt a secondorder resistor-capacitor(2 RC) network, the parameters of which are identified by the HPPC. Two conditions, both constant current discharge(CCD) and urban dynamometer driving schedule(UDDS), are utilized to validate the FDEKF algorithm.Comparing convergence rate and accuracy between the FDEKF and the EKF algorithm, it can be seen that the former is a better candidate to estimate the SOC.