We propose a numerical methodology for the simultaneous numerical simulation of four states of matter:gas,liquid,elastoplastic solids,and plasma.The distinct,interacting physical processes are described by a combinati...We propose a numerical methodology for the simultaneous numerical simulation of four states of matter:gas,liquid,elastoplastic solids,and plasma.The distinct,interacting physical processes are described by a combination of compressible,inert,and reactive forms of the Euler equations,multi-phase equations,elastoplastic equations,and resistive MHD equations.Combinations of systems of equations are usually solved by coupling finite element for solid modelling and CFD models for fluid modelling or including material effects through boundary conditions rather than full material discretisation.Our simultaneous solution methodology lies on the recasting of all the equations in the same,hyperbolic form allowing their solution on the same grid with the same finite volume numerical schemes.We use a combination of sharp-and diffuse-interface methods to track or capture material interfaces,depending on the application.The communication between the distinct systems of equations(i.e.,materials separated by sharp interfaces)is facilitated by means of mixed-material Riemann solvers at the boundaries of the systems,which represent physical material boundaries.To this end,we derive approximate mixed-material Riemann solvers for each pair of the above models based on characteristic equations.To demonstrate the applicability of the new methodology,we consider a case study,where we investigate the possibility of ignition of a combustible gas that lies over a liquid in a metal container that is struck by a plasma arc akin to a lightning strike.We study the effect of the metal container material and its conductivity on the ignition of the combustible gas,as well as the effects of an additional dielectric coating,the sensitivity of the gas,and differences between scenarios with sealed and pre-damaged metal surfaces.展开更多
The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quant...The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimen- tal data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.展开更多
基金This work was supported by Jaguar Land Rover and the UK-EPSRC Grant EP/K014188/1 as part of the jointly funded Programme for Simulation Innovation and Boeing Research&Technology(BR&T)Grant SSOW-BRT-L0516-0569.
文摘We propose a numerical methodology for the simultaneous numerical simulation of four states of matter:gas,liquid,elastoplastic solids,and plasma.The distinct,interacting physical processes are described by a combination of compressible,inert,and reactive forms of the Euler equations,multi-phase equations,elastoplastic equations,and resistive MHD equations.Combinations of systems of equations are usually solved by coupling finite element for solid modelling and CFD models for fluid modelling or including material effects through boundary conditions rather than full material discretisation.Our simultaneous solution methodology lies on the recasting of all the equations in the same,hyperbolic form allowing their solution on the same grid with the same finite volume numerical schemes.We use a combination of sharp-and diffuse-interface methods to track or capture material interfaces,depending on the application.The communication between the distinct systems of equations(i.e.,materials separated by sharp interfaces)is facilitated by means of mixed-material Riemann solvers at the boundaries of the systems,which represent physical material boundaries.To this end,we derive approximate mixed-material Riemann solvers for each pair of the above models based on characteristic equations.To demonstrate the applicability of the new methodology,we consider a case study,where we investigate the possibility of ignition of a combustible gas that lies over a liquid in a metal container that is struck by a plasma arc akin to a lightning strike.We study the effect of the metal container material and its conductivity on the ignition of the combustible gas,as well as the effects of an additional dielectric coating,the sensitivity of the gas,and differences between scenarios with sealed and pre-damaged metal surfaces.
基金Acknowledgements V.R. Shaginyan is supported by the Russian Science Foundation, Grant No. 14-22-00281. A. Z. Msezane thanks the US DOE, Division of Chemical Sciences, Office of Energy Research, and ARO for research support. K. G. Popov is partly supported by RFBR # 14-02-00044. V. A. Khodel thanks the McDonnell Center for the Space Sciences for support.
文摘The aim of this review paper is to expose a new state of matter exhibited by strongly correlated Fermi systems represented by various heavy-fermion (HF) metals, two-dimensional liquids like 3He, compounds with quantum spin liquids, quasicrystals, and systems with one-dimensional quantum spin liquid. We name these various systems HF compounds, since they exhibit the behavior typical of HF metals. In HF compounds at zero temperature the unique phase transition, dubbed throughout as the fermion condensation quantum phase transition (FCQPT) can occur; this FCQPT creates flat bands which in turn lead to the specific state, known as the fermion condensate. Unlimited increase of the effective mass of quasiparticles signifies FCQPT; these quasiparticles determine the thermodynamic, transport and relaxation properties of HF compounds. Our discussion of numerous salient experimen- tal data within the framework of FCQPT resolves the mystery of the new state of matter. Thus, FCQPT and the fermion condensation can be considered as the universal reason for the non-Fermi liquid behavior observed in various HF compounds. We show analytically and using arguments based completely on the experimental grounds that these systems exhibit universal scaling behavior of their thermodynamic, transport and relaxation properties. Therefore, the quantum physics of different HF compounds is universal, and emerges regardless of the microscopic structure of the compounds. This uniform behavior allows us to view it as the main characteristic of a new state of matter exhibited by HF compounds.