One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the flu...One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.展开更多
In this paper,we present a time-domain dynamic state estimation for unbalanced three-phase power systems.The dynamic nature of the estimator stems from an explicit consideration of the electromagnetic dynamics of the ...In this paper,we present a time-domain dynamic state estimation for unbalanced three-phase power systems.The dynamic nature of the estimator stems from an explicit consideration of the electromagnetic dynamics of the network,i.e.,the dynamics of the electrical lines.This enables our approach to release the assumption of the network being in quasi-steady state.Initially,based on the line dynamics,we derive a graphbased dynamic system model.To handle the large number of interacting variables,we propose a port-Hamiltonian modeling approach.Based on the port-Hamiltonian model,we then follow an observer-based approach to develop a dynamic estimator.The estimator uses synchronized sampled value measurements to calculate asymptotic convergent estimates for the unknown bus voltages and currents.The design and implementation of the estimator are illustrated through the IEEE 33-bus system.Numerical simulations verify the estimator to produce asymptotic exact estimates,which are able to detect harmonic distortion and sub-second transients as arising from converterbased resources.展开更多
Forest yellow soil and arable yellow soil in Jinyun Mountain were collected to study the effect of simulated acid rain(adjusted to pH 2.0,3.0,4.0 and 5.0) on the Hg leaching from soils by the methods of static extract...Forest yellow soil and arable yellow soil in Jinyun Mountain were collected to study the effect of simulated acid rain(adjusted to pH 2.0,3.0,4.0 and 5.0) on the Hg leaching from soils by the methods of static extraction and dynamic leaching.The results showed that in forest yellow soils,surface accumulation of Hg occurred,and the accumulated Hg was easier to be leached out than that in arable yellow soil by acid rain.The amount of leached Hg was the largest at pH 4.0.To abate the risk of Hg pollution in water bodies by the Hg leaching from this forest soil,the Mountain should be closed,and timber-felling should be forbidden.展开更多
文摘One of the most effective methods for sand control is the chemical consolidation of sandstone structures.In this paper,the impacts of crude oil and brine in the static state and the impact of the flow rates of the fluids in the dynamic state have been assessed at the reservoir conditions.The analyses in this research were Young’s modulus,compressive strength,porosity,and permeability which were done on core samples after and before fluid contact.Samples made with two different resins showed good resistance to crude oil in both states.No considerable change was seen in the analyses even at high crude oil injection rates in the dynamic state.Conversely,brine caused a noticeable change in the analyses in both states.In the presence of brine at the static state,Young’s modulus and compressive strength respectively decreased by 37.5%and 34.5%for epoxy cores,whereas these parameters respectively reduced by 30%and 41%for furan cores.In brine presence at the dynamic state,compressive strength reduction was 10.28 MPa for furan and 6.28 MPa for epoxy samples and their compressive strength reached 16.75 MPa and 26.54 MPa respectively which are higher than the critical point to be known as weak sandstone core.Moreover,Young’s modulus decrease values for furan and epoxy samples were respectively 0.37 GPa and 0.44 GPa.Therefore,brine had a more destructive effect on the mechanical characteristics of samples in the static state than the dynamic one for two resins.In addition,brine injection increased permeability by about 13.6%for furan and 34.8%for epoxy.Also,porosity raised by about 21.8%for furan,and 19%for epoxy by brine injection.The results showed that the chemical sand consolidation weakens in the face of brine production along with crude oil which can lead to increasing cost of oil production and treating wellbore again.
文摘In this paper,we present a time-domain dynamic state estimation for unbalanced three-phase power systems.The dynamic nature of the estimator stems from an explicit consideration of the electromagnetic dynamics of the network,i.e.,the dynamics of the electrical lines.This enables our approach to release the assumption of the network being in quasi-steady state.Initially,based on the line dynamics,we derive a graphbased dynamic system model.To handle the large number of interacting variables,we propose a port-Hamiltonian modeling approach.Based on the port-Hamiltonian model,we then follow an observer-based approach to develop a dynamic estimator.The estimator uses synchronized sampled value measurements to calculate asymptotic convergent estimates for the unknown bus voltages and currents.The design and implementation of the estimator are illustrated through the IEEE 33-bus system.Numerical simulations verify the estimator to produce asymptotic exact estimates,which are able to detect harmonic distortion and sub-second transients as arising from converterbased resources.
文摘Forest yellow soil and arable yellow soil in Jinyun Mountain were collected to study the effect of simulated acid rain(adjusted to pH 2.0,3.0,4.0 and 5.0) on the Hg leaching from soils by the methods of static extraction and dynamic leaching.The results showed that in forest yellow soils,surface accumulation of Hg occurred,and the accumulated Hg was easier to be leached out than that in arable yellow soil by acid rain.The amount of leached Hg was the largest at pH 4.0.To abate the risk of Hg pollution in water bodies by the Hg leaching from this forest soil,the Mountain should be closed,and timber-felling should be forbidden.