Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the...Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.展开更多
Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile intera...Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile interaction. The horizontal displacement-force relationship of the pile head and bending moment distribution along the body in frozen soils of different temperatures were discussed. According to test results, both the horizontal disp!acement-force relationship of the DX pile head and bending moment distribution of the DX pile body are smaller than that of equal-diameter piles under same lateral loads. The piles with different plate positions show different displacements and bending moments. This phenomenon is mainly related to the soil temperature and bearing plates locations. Thus, dynamic response analysis of the pile foundation should be taken into account.展开更多
Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's a...Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's and ЪерезанцевВГ's methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi's method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.展开更多
我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力...我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力的影响程度;并结合扫描电镜(scanning electron microscope,简称SEM)试验分析了浆液分布特点,探讨了浆液在卵石层中的扩散范围,研究了浆液扩散范围与桩承载力之间的关系。结果表明:浆液能够有效地填充桩端卵石层,注浆量的增加使得填充范围扩大,填充范围为3~4倍桩径时,桩的承载力改善最显著。在不均匀卵石持力层中存在一个最优注浆量,最优归一化注浆量约为2.8,若超过该最优注浆量归一化值,桩的承载力不再显著提高。单桩模型试验确定的最优注浆量与刘金砺公式[1]的预测结果接近。扫描电镜技术有助于评价桩的后注浆技术在上覆深厚软土下覆不均匀卵石的土层中的效果。展开更多
基金Supported by the National Natural Science Foundation of China (50908048)the Priority Academic Program Development (PAPD) Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present, with increase in diameter and length of deep foundations. In this paper, a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism. The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant. Some new load cells, test procedure, and construction technology were adopted based on the applications to different deep foundations, which could enlarge the application scopes of bi-directional loading test. A new type of bi-directional loading test for pipe pile was conducted, in which the load cell was installed and loaded after the pipe pile with special connector has been set up. Unlike the conventional bi-directional loading test, the load cell can be reused and shows an evident economic benefit.
基金supported by the Fundamental Research Funds for the Central Universities of China (Grant No.2011JBM269)the State Key Development Programof Basic Research of China (973 Project No.2012CB026104)the College Students Technology Innovation Experiment project in Beijing Jiaotong University
文摘Experiments about working mechanism and mechanical characteristics of the DX model pile foundation under lateral dynamic and static loading were conducted by using a model system of the dynamic frozen soil-pile interaction. The horizontal displacement-force relationship of the pile head and bending moment distribution along the body in frozen soils of different temperatures were discussed. According to test results, both the horizontal disp!acement-force relationship of the DX pile head and bending moment distribution of the DX pile body are smaller than that of equal-diameter piles under same lateral loads. The piles with different plate positions show different displacements and bending moments. This phenomenon is mainly related to the soil temperature and bearing plates locations. Thus, dynamic response analysis of the pile foundation should be taken into account.
文摘Based on Mindlin stress solution, a numerical computational method was proposed to calculate the stresses in the ground induced by side friction and the resistance of Y-shaped vibro-pile. The improved Terzaghi's and ЪерезанцевВГ's methods for ultimate bearing capacity evaluation were proposed by considering the stress strength induced by friction resistance at pile head level of Y-pile. A new method to calculate the ultimate bearing capacity of Y-pile was also proposed based on the assumptions of soil failure mode at the tip of Y-pile and the use of Mohr-Coulomb soil yield criterion and Vesic compressive correction coefficient with the induced stresses in the ground. Based on the comparisons with the field static load test results, it is found that the improved Terzaghi's method gives higher ultimate capacity, while the other two methods shows good agreement with the field results.
文摘我国东南沿海尤其是温州地区广泛存在上覆深厚软土下覆不均匀卵石的地层。该区域的钻孔灌注桩常采用后注浆技术改善其承载性能。为了评价后注浆技术对这类地层中灌注桩承载力改善效果,开展了相应的模型试验,对比了不同注浆量对桩承载力的影响程度;并结合扫描电镜(scanning electron microscope,简称SEM)试验分析了浆液分布特点,探讨了浆液在卵石层中的扩散范围,研究了浆液扩散范围与桩承载力之间的关系。结果表明:浆液能够有效地填充桩端卵石层,注浆量的增加使得填充范围扩大,填充范围为3~4倍桩径时,桩的承载力改善最显著。在不均匀卵石持力层中存在一个最优注浆量,最优归一化注浆量约为2.8,若超过该最优注浆量归一化值,桩的承载力不再显著提高。单桩模型试验确定的最优注浆量与刘金砺公式[1]的预测结果接近。扫描电镜技术有助于评价桩的后注浆技术在上覆深厚软土下覆不均匀卵石的土层中的效果。