A 6-DOF micro-manipulation robot based on a 3-PPTTRS mechanism is proposed in this paper.Its static stiffness is an important index to evaluate load capacity and positioning accuracy.However,it is insufficient to cons...A 6-DOF micro-manipulation robot based on a 3-PPTTRS mechanism is proposed in this paper.Its static stiffness is an important index to evaluate load capacity and positioning accuracy.However,it is insufficient to consider the static stiffness only when the robot is in its initial pose.The stiffness in different positions and poses in its work space must be analyzed also.Thus a method to analyze the relationship between static stiffness and poses in the whole work space is presented.A static stiffness model is proposed first,and the relationship between structural parameters and static stiffness in different poses is discussed.The static stiffness analysis provides foundation for structural parameter design.展开更多
Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key c...Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key components.The support system,an important part of TBM,is one path through which vibrational energy from the cutter head is transmitted.To reduce the vibration of support systems of TBM during the excavation process,based on the structural features of the support hydraulic system,a nonlinear dynamical model of support hydraulic systems of TBM is established.The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed.The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage,stable stage and decrease stage.The static stiffness value increases with an increase in the clearances.The pre-compression length of the spring in the relief valve a ects the range of the stable stage of the static stiffness,and it does not a ect the static stiffness value.The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape.The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body,however,the top value of the reverse U-shape remains constant.This study instructs how to design the support hydraulic system of TBM.展开更多
The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manuf...Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.展开更多
Due to low viscosity of seawater,it is difficult to form a seawater-lubricated film.It is easy to cause the overload and burning phenomenon of seawater-lubrication sliding bearing,and then the operation stability and ...Due to low viscosity of seawater,it is difficult to form a seawater-lubricated film.It is easy to cause the overload and burning phenomenon of seawater-lubrication sliding bearing,and then the operation stability and service life can be shortened seriously.Therefore,the paper introduces an electromagnetic suspension theory into the seawater lubricated sliding bearing.Then a novel magnetic-liquid double suspension bearing can be formed,which can enhance bearing capacity and stiffness greatly.Firstly,the structural characteristics,support-adjustment mechanism of magnetic-liquid double suspension bearing is analyzed.Secondly,based on force balance equation,electromagnetic equation and flow equation,the transfer functions of single DOF bearing system of magnetic-liquid double suspension bearing under constant-flow supply model are deduced.Then bearing capacity,static stiffness and total power loss are selected as static performance indexes.The influence rule of operaton and structural parameters on the static performance of single DOF bearing system will be analyzed.The results show that bearing capacity decreases with the increase of liquid film thickness and width of edge seals,bias current and coil turns decrease.Static stiffness decreases with the increase of liquid film thickness,edge seals width,bias current and coil turns.Total power loss decreases with the increase of liquid film thickness,edge seals width,bias current and coil turns decrease.And static performance indexes can not be affected by liquid viscosity.The proposed research provides some theoretical and experimental basis for the parameter design of magnetic-liquid double suspension bearing.展开更多
As one of the typical less-mobility parallel mechanisms, the spherical parallel mechanism Up.s with two degrees of freedom (2-DOF) possess high order overconstraints, and the calculation of its stiffness is partly d...As one of the typical less-mobility parallel mechanisms, the spherical parallel mechanism Up.s with two degrees of freedom (2-DOF) possess high order overconstraints, and the calculation of its stiffness is partly different with general parallel mechanisms owing to the bars in each branch are assumed to be arc-shaped. By means of small deformation superposition principle, the relationship between the angle displacement and line displacement of moving platform and the forces acted on the branches were derived out. Based on the results of static analysis, the relationship between the applied force, the line displacement and the angle displacement of the mechanism was set up. And then the stiffness matrix was obtained. The six principal stiffness of the mechanism and the corresponding directions were achieved by the orthogonal transformation. The numerical calculation was performed and the results showed that the principal stiffness and directions are varied with the pose-position of the mechanism, and the principal stiffness is gradually enlarged when it is far away from the anigin. In addition, the torsion stiffness is much greater and the line deformation stiffness is smaller, the difference between the two parts is huge. The research content of this paper supplies the theoretical foundation for the further engineering design and application of the spherical parallel mechanism.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
文摘A 6-DOF micro-manipulation robot based on a 3-PPTTRS mechanism is proposed in this paper.Its static stiffness is an important index to evaluate load capacity and positioning accuracy.However,it is insufficient to consider the static stiffness only when the robot is in its initial pose.The stiffness in different positions and poses in its work space must be analyzed also.Thus a method to analyze the relationship between static stiffness and poses in the whole work space is presented.A static stiffness model is proposed first,and the relationship between structural parameters and static stiffness in different poses is discussed.The static stiffness analysis provides foundation for structural parameter design.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1702503)National Program on Key Basic Research Project of China(973 Program,Grant No.2013CB035403)Startup Fund for Youngman Research at SJTU(SFYR at SJTU)
文摘Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key components.The support system,an important part of TBM,is one path through which vibrational energy from the cutter head is transmitted.To reduce the vibration of support systems of TBM during the excavation process,based on the structural features of the support hydraulic system,a nonlinear dynamical model of support hydraulic systems of TBM is established.The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed.The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage,stable stage and decrease stage.The static stiffness value increases with an increase in the clearances.The pre-compression length of the spring in the relief valve a ects the range of the stable stage of the static stiffness,and it does not a ect the static stiffness value.The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape.The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body,however,the top value of the reverse U-shape remains constant.This study instructs how to design the support hydraulic system of TBM.
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
基金supported by National Natural Science Foundation ofChina (Grant No. 50335010)
文摘Externally pressurized spherical air bearings are the key component of the three-axis air bearing table, and the manufacturing errors of the bearing affects the performance of the air bearing table. However, the manufacturing errors are unavoidable, and the pursuit to enhance the manufacturing accuracy will increase the cost greatly. In order to provide some theoretical guideline for the tolerance choice in the design of the externally pressurized spherical air bearings with inherent compensation, the effects of several manufacturing errors on the static characteristics of the air bearing are studied. Due to the complex geometry of the computational domain, an unstructured meshing technology is used for mesh generation. A finite-volume method is adopted to discretize the three-dimensional steady-state compressible Navier-Stokes equations. A modified SIMPLE algorithm which is suitable for compressible flows is applied to solve the discretized governing equations. The effects of the dimension error and the roundness error of the ball head and the ball socket on the static characteristics are investigated. The investigation result shows that the positive dimension error and the oblate spheroid-type roundness error of the ball head as well as the negative dimension error and the prolate spheroid-type roundness error of the ball socket can improve the bearing capacity and static stiffness of the air bearings by reducing the mass flow. The calculation method proposed in this paper fits well for the general principle, which can be extended to the characteristics analysis of other air bearings.
基金Support by the National Natural Science Foundation of China(No.51705445)the Open Project Funding of Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Controlthe Open Project Funding of Jiangsu Provincial Key Laboratory of Advanced Manufacture and Process for Marine Mechanical Equipment
文摘Due to low viscosity of seawater,it is difficult to form a seawater-lubricated film.It is easy to cause the overload and burning phenomenon of seawater-lubrication sliding bearing,and then the operation stability and service life can be shortened seriously.Therefore,the paper introduces an electromagnetic suspension theory into the seawater lubricated sliding bearing.Then a novel magnetic-liquid double suspension bearing can be formed,which can enhance bearing capacity and stiffness greatly.Firstly,the structural characteristics,support-adjustment mechanism of magnetic-liquid double suspension bearing is analyzed.Secondly,based on force balance equation,electromagnetic equation and flow equation,the transfer functions of single DOF bearing system of magnetic-liquid double suspension bearing under constant-flow supply model are deduced.Then bearing capacity,static stiffness and total power loss are selected as static performance indexes.The influence rule of operaton and structural parameters on the static performance of single DOF bearing system will be analyzed.The results show that bearing capacity decreases with the increase of liquid film thickness and width of edge seals,bias current and coil turns decrease.Static stiffness decreases with the increase of liquid film thickness,edge seals width,bias current and coil turns.Total power loss decreases with the increase of liquid film thickness,edge seals width,bias current and coil turns decrease.And static performance indexes can not be affected by liquid viscosity.The proposed research provides some theoretical and experimental basis for the parameter design of magnetic-liquid double suspension bearing.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51275443 and 51005195)Key Project of Chinese Ministry of Education(Grant No.212012)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111333120004)Natural Science Foundationof Hebei Province(Grant No.E2012203034)
文摘As one of the typical less-mobility parallel mechanisms, the spherical parallel mechanism Up.s with two degrees of freedom (2-DOF) possess high order overconstraints, and the calculation of its stiffness is partly different with general parallel mechanisms owing to the bars in each branch are assumed to be arc-shaped. By means of small deformation superposition principle, the relationship between the angle displacement and line displacement of moving platform and the forces acted on the branches were derived out. Based on the results of static analysis, the relationship between the applied force, the line displacement and the angle displacement of the mechanism was set up. And then the stiffness matrix was obtained. The six principal stiffness of the mechanism and the corresponding directions were achieved by the orthogonal transformation. The numerical calculation was performed and the results showed that the principal stiffness and directions are varied with the pose-position of the mechanism, and the principal stiffness is gradually enlarged when it is far away from the anigin. In addition, the torsion stiffness is much greater and the line deformation stiffness is smaller, the difference between the two parts is huge. The research content of this paper supplies the theoretical foundation for the further engineering design and application of the spherical parallel mechanism.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.