The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily con...The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.展开更多
An experimental program was initiated to investigate the seismic performance of built-up laced steel brace members. Quasi-static testing of twelve typical steel built-up laced member (BLM) specimens was conducted. T...An experimental program was initiated to investigate the seismic performance of built-up laced steel brace members. Quasi-static testing of twelve typical steel built-up laced member (BLM) specimens was conducted. These were designed to span a range of parameters typically encountered for such members based on findings from a survey of commonly used shapes and details that have been historically used. The specimens were subdivided into groups of three different cross-sectional shapes, namely built-up I-shape section, and built-up box shapes buckling about the x or the y axis. Within each group, global and local buckling slenderness ratios had either kl/r values of 60 or 120, and b/t ratios of 8 or 16. The specific inelastic cyclic behavior germane to each specimen, and general observations on overall member hysteretic behavior as a function of the considered parameters, are reported. A companion paper (Lee and Bruneau 2008) investigates this observed response against predictions from analytical models, and behavior in the perspective of system performance.展开更多
文摘The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.
基金Federal Highway Administration Under Grant No. DTFH61-98-C-00094
文摘An experimental program was initiated to investigate the seismic performance of built-up laced steel brace members. Quasi-static testing of twelve typical steel built-up laced member (BLM) specimens was conducted. These were designed to span a range of parameters typically encountered for such members based on findings from a survey of commonly used shapes and details that have been historically used. The specimens were subdivided into groups of three different cross-sectional shapes, namely built-up I-shape section, and built-up box shapes buckling about the x or the y axis. Within each group, global and local buckling slenderness ratios had either kl/r values of 60 or 120, and b/t ratios of 8 or 16. The specific inelastic cyclic behavior germane to each specimen, and general observations on overall member hysteretic behavior as a function of the considered parameters, are reported. A companion paper (Lee and Bruneau 2008) investigates this observed response against predictions from analytical models, and behavior in the perspective of system performance.