A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is establish...A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is established.Then,the reverse learning strategy and Levy flight disturbance strategy are introduced to improve the whale optimization algorithm,and the improved whale optimization algorithm is applied to the parameter identification of the static var compensator model.Finally,a stepwise identification method,by analyzing the local sensitivities of parameters,is proposed which solves the problem of low accuracy caused by multi-parameter identification.This method provides a new estimation strategy for accurately identifying the parameters of the static var compensator model.Estimation results show that the parameter estimation method can be an effective tool to solve the problem of parameter identification for the SVC model.展开更多
文摘A parameter estimation method based on an improved Whale Optimization Algorithm is proposed in this paper to identify the parameters of a static var compensator(SVC)model.First,a mathematical model of SVC is established.Then,the reverse learning strategy and Levy flight disturbance strategy are introduced to improve the whale optimization algorithm,and the improved whale optimization algorithm is applied to the parameter identification of the static var compensator model.Finally,a stepwise identification method,by analyzing the local sensitivities of parameters,is proposed which solves the problem of low accuracy caused by multi-parameter identification.This method provides a new estimation strategy for accurately identifying the parameters of the static var compensator model.Estimation results show that the parameter estimation method can be an effective tool to solve the problem of parameter identification for the SVC model.