A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple un...A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.展开更多
This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures...This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘A new type of vibration structure of vertical dynamic balancing machine isdesigned, which is based on the analysis for swing frame of a traditional vertical dynamic balancingmachine. The static unbalance and couple unbalance can be separated effectively by using the newmachine with the new swing frame. By building the dynamics model, the advantages of the newstructure are discussed in detail. The modal and harmonic response are analyzed by using theANSYS7.0. By comparing the finite element modal analysis with the experimental modal analysis, thenatural frequencies and vibration modes are found out. There are many spring boards in the new swingframe. Their stiffness is different and assort with each other. Furthermore, there are threesensors on the measurement points. Therefore, the new dynamic balancing machine can measure thestatic unbalance and couple unbalance directly, and the influence between them is faint. The newstructure has the function of belt-strain compensation to improve the measurement precision. Thepractical result indicates that the new vertical dynamic balancing machine is suitable for inertialmeasurement of flying objects, and can overcome the shortcomings of traditional double-planevertical dynamic balancing machines. The vertical dynamic balancing machine with the new vibrationstructure can be widely used in the future applications. The modeling and analysis of the newvibration structure provide theoretic instruction and practical experience for designing new type ofvertical dynamic balancing machines. Based on the design principles such as stiffness-matching,frequency-adjacence and strain-compensation and so on, various new type of vibration structures canbe designed.
基金China Earthquake Administration Association Fund Under Grant No. 106060 and Institute of Engineering Mechanics Director Fund
文摘This paper describes a commonly used pseudo-static method in seismic resistant design of the cross section of underground structures. Based on dynamic theory and the vibration characteristics of underground structures, the sources of errors when using this method are analyzed. The traditional seismic motion loading approach is replaced by a method in which a one-dimensional soil layer response stress is differentiated and then converted into seismic live loads. To validate the improved method, a comparison of analytical results is conducted for internal forces under earthquake shaking of a typical shallow embedded box-shaped subway station structure using four methods: the response displacement method, finite element response acceleration method, the finite element dynamic analysis method and the improved pseudo-static calculation method. It is shown that the improved finite element pseudo-static method proposed in this paper provides an effective tool for the seismic design of underground structures. The evaluation yields results close to those obtained by the finite element dynamic analysis method, and shows that the improved finite element pseudo-static method provides a higher degree of precision.