Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial c...Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.展开更多
The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every in...The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant...Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was ...[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.展开更多
Based on tidal data statistical analysis for 20 years of Tanggu Marine Environmental Monitoring Station from 1991 to 2010, we concluded that an average of nearly 10 days of 100 cm above water increase took place at Ti...Based on tidal data statistical analysis for 20 years of Tanggu Marine Environmental Monitoring Station from 1991 to 2010, we concluded that an average of nearly 10 days of 100 cm above water increase took place at Tianjin coast every year. The maximum high tide and average tide of Tianjin coast occurred in summer and autumn, and the maximum water increase also occurred in summer and autumn. Days with water increase more than 100 cm mostly occurred in spring, autumn and winter. Then we summarized the causes of coastal storm surge disaster in Tianjin based on astronomical tide factors, meteorological factors, sea level rise, land subsidence, and geographic factors, et al. Finally, we proposed storm surge disaster prevention measures.展开更多
We propose an improved statistical approach for modeling interconnect slew that takes into account the scattering effect of a nanoscale wire. We first propose a simple, closed-form scattering effect resistivity model,...We propose an improved statistical approach for modeling interconnect slew that takes into account the scattering effect of a nanoscale wire. We first propose a simple, closed-form scattering effect resistivity model, considering the effects of both width and thickness. Then we use this model to derive statistical expressions of the slew metrics using the SS2M model. We find that the delay and slew can be greatly increased when considering the scattering effect. The proposed statistical SS2M model has an average error of 4.16% with respect to SPICE Monte Carlo simulations, with an average error of standard deviation of only 3.06%.展开更多
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp...Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
The use of statistics has received increasing attention in the studies of linguistics and applied linguistics. However,due to its complexity and preciseness,there are many problems of application of statistics. The pr...The use of statistics has received increasing attention in the studies of linguistics and applied linguistics. However,due to its complexity and preciseness,there are many problems of application of statistics. The present paper tries to discuss the application of statistics in a M.A. dissertation and aims to explain how to apply statistics to linguistics research normatively,scientifically,and precisely.展开更多
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC c...Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of glo...This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of global Moran Coefficient, Local Moran and Local Geary. Furthermore, a user-friendly statistical module, combining spatial statistical analysis methods with GIS visual techniques, is developed in Arcview using Avenue. An example is also given to show the usefulness of this module in identifying and quantifying the underlying spatial association patterns between economic units.展开更多
[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct stat...[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct statistical analysis on the field efficacy of pesticides was introduced, and an example was used to illustrate the usage and skill of the program. [Result] The procedure could quickly and accurately con- duct statistical analysis on the field efficacy of pesticide by only inputting initial data of the test, and it could compare the significance of differences between various fac- tors. Its calculated results were consistent with the results of the specialized statisti- cal software DPS. [Conclusion] It is a quick and simple method with high accuracy and reliability, which can greatly improve the efficiency of pesticide formulation opti- mization.展开更多
The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence t...The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence that is applied to medical study was built by the authors. An example was given to demonstrate it. The superiority of GRA was recounted briefly.展开更多
Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the t...Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.展开更多
There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal compo...There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal component analysis, cluster analysis, factor analysis, pattern analysis, discriminant analysis, multivariate analysis of variance, correspondence analysis, canonical correlation analysis, redundancy analysis, genetic diversity analysis, and stability analysis, which involve in joint regression, additive main effects and multiplicative interactions, and genotype-by-environment interaction biplot analysis. The advanced statistical tools, such as non-parametric analysis of disease association, meta-analysis, Bayesian analysis, and decision theory, take an important place in analysis of disease dynamics. Disease forecasting methods by simulation models for plant diseases have a great potentiality in practical disease control strategies. Common mathematical tools such as monomolecular, exponential, logistic, Gompertz and linked differential equations take an important place in growth curve analysis of disease epidemics. The highly informative means of displaying a range of numerical data through construction of box and whisker plots has been suggested. The probable applications of recent advanced tools of linear and non-linear mixed models like the linear mixed model, generalized linear model, and generalized linear mixed models have been presented. The most recent technologies such as micro-array analysis, though cost effective, provide estimates of gene expressions for thousands of genes simultaneously and need attention by the molecular biologists. Some of these advanced tools can be well applied in different branches of rice research, including crop improvement, crop production, crop protection, social sciences as well as agricultural engineering. The rice research scientists should take advantage of these new opportunities adequately in adoption of the new highly potential advanced technologies while planning experimental designs, data collection, analysis and interpretation of their research data sets.展开更多
Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental...Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.展开更多
基金supported by National Key R&D Program of China(2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_2913)the Graduate Innovation Program of China University of Mining and Technology(No.2024WLKXJ139).
文摘Rock failure can cause serious geological disasters,and the non-extensive statistical features of electric potential(EP)are expected to provide valuable information for disaster prediction.In this paper,the uniaxial compression experiments with EP monitoring were carried out on fine sandstone,marble and granite samples under four displacement rates.The Tsallis entropy q value of EPs is used to analyze the selforganization evolution of rock failure.Then the influence of displacement rate and rock type on q value are explored by mineral structure and fracture modes.A self-organized critical prediction method with q value is proposed.The results show that the probability density function(PDF)of EPs follows the q-Gaussian distribution.The displacement rate is positively correlated with q value.With the displacement rate increasing,the fracture mode changes,the damage degree intensifies,and the microcrack network becomes denser.The influence of rock type on q value is related to the burst intensity of energy release and the crack fracture mode.The q value of EPs can be used as an effective prediction index for rock failure like b value of acoustic emission(AE).The results provide useful reference and method for the monitoring and early warning of geological disasters.
文摘The recent pandemic crisis has highlighted the importance of the availability and management of health data to respond quickly and effectively to health emergencies, while respecting the fundamental rights of every individual. In this context, it is essential to find a balance between the protection of privacy and the safeguarding of public health, using tools that guarantee transparency and consent to the processing of data by the population. This work, starting from a pilot investigation conducted in the Polyclinic of Bari as part of the Horizon Europe Seeds project entitled “Multidisciplinary analysis of technological tracing models of contagion: the protection of rights in the management of health data”, has the objective of promoting greater patient awareness regarding the processing of their health data and the protection of privacy. The methodology used the PHICAT (Personal Health Information Competence Assessment Tool) as a tool and, through the administration of a questionnaire, the aim was to evaluate the patients’ ability to express their consent to the release and processing of health data. The results that emerged were analyzed in relation to the 4 domains in which the process is divided which allows evaluating the patients’ ability to express a conscious choice and, also, in relation to the socio-demographic and clinical characteristics of the patients themselves. This study can contribute to understanding patients’ ability to give their consent and improve information regarding the management of health data by increasing confidence in granting the use of their data for research and clinical management.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
基金SASTRA Deemed University,India for its generous research support。
文摘Solid waste recycling is an economically sound strategy for preserving the environment,safeguarding natural resources,and diminishing the reliance on raw material consumption.Geopolymer technology offers a significant advantage by enabling the reuse and recycling of diverse materials.This research assesses how including silica fume and glass powder enhances the impact resistance of ultra-high-performance geopolymer concrete(UHPGC).In total,18 distinct mixtures were formulated by substituting ground granulated blast furnace slag with varying proportions of silica fume and glass powder,ranging from 10%to 40%.Similarly,for each of the mixtures above,steel fibre was added at a dosage of 1.5%to address the inherent brittleness of UHPGC.The mixtures were activated by combining sodium hydroxide and sodium silicate solution to generate geopolymer binders.The specimens were subjected to drop-weight impact testing,wherein an examination was carried out to evaluate various parameters,including flowability,density at fresh and hardened state,compressive strength,impact numbers indicative of cracking and failure occurrences,ductility index,and analysis of failure modes.Additionally,the variations in the impact test outcomes were analyzed using the Weibull distribution,and the findings corresponding to survival probability were offered.Furthermore,the microstructure of UHPGC was scrutinized through scanning electron microscopy.Findings reveal that the specimens incorporating glass powder exhibited lower cracking impact number values than those utilizing silica fume,with reductions ranging from 18.63%to 34.31%.Similarly,failure impact number values decreased from 8.26%to 28.46%across glass powder contents.The maximum compressive and impact strength was recorded in UHPGC,comprising 10%silica fume with fibres.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
基金Supported by the Guangdong Technological Program (2009B02001002)the Special Funds of National Agricultural Department for Commonweal Trade Research (nyhyzx07-019)the Earmarked Fund for Modern Agro-industry Technology Research System~~
文摘[Objective] The study aimed to compare several statistical analysis models for estimating the sugarcane (Saccharum spp.) genotypic stability. [Method] The data of sugarcane regional trials in Guangdong, in 2009 was analyzed by three models respectively: Finlay and Wilkinson model: the additive main effects and multiplicative interaction (AMMI) model and linear regression-principal components analysis (LR- PCA) model, so as to compare the models. [Result] The Finlay and Wilkinson model was easier, but the analysis of the other two models was more comprehensive, and there was a bit difference between the additive main effects and multiplicative inter- action (AMMI) model and linear regression-principal components analysis (LR-PCA) model. [Conclusion] In practice, while the proper statistical method was usually con- sidered according to the different data, it should be also considered that the same data should be analyzed with different statistical methods in order to get a more reasonable result by comparison.
文摘Based on tidal data statistical analysis for 20 years of Tanggu Marine Environmental Monitoring Station from 1991 to 2010, we concluded that an average of nearly 10 days of 100 cm above water increase took place at Tianjin coast every year. The maximum high tide and average tide of Tianjin coast occurred in summer and autumn, and the maximum water increase also occurred in summer and autumn. Days with water increase more than 100 cm mostly occurred in spring, autumn and winter. Then we summarized the causes of coastal storm surge disaster in Tianjin based on astronomical tide factors, meteorological factors, sea level rise, land subsidence, and geographic factors, et al. Finally, we proposed storm surge disaster prevention measures.
基金Project supported by the National Natural Science Foundation of China(No.90307017)
文摘We propose an improved statistical approach for modeling interconnect slew that takes into account the scattering effect of a nanoscale wire. We first propose a simple, closed-form scattering effect resistivity model, considering the effects of both width and thickness. Then we use this model to derive statistical expressions of the slew metrics using the SS2M model. We find that the delay and slew can be greatly increased when considering the scattering effect. The proposed statistical SS2M model has an average error of 4.16% with respect to SPICE Monte Carlo simulations, with an average error of standard deviation of only 3.06%.
文摘Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘The use of statistics has received increasing attention in the studies of linguistics and applied linguistics. However,due to its complexity and preciseness,there are many problems of application of statistics. The present paper tries to discuss the application of statistics in a M.A. dissertation and aims to explain how to apply statistics to linguistics research normatively,scientifically,and precisely.
基金China National Science Foundation(40730948,41075037,41175063)Special Project of Chinese Academy of Meteorological Sciences(2007Y006)
文摘Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
文摘This paper summarizes a few spatial statistical analysis methods for to measuring spatial autocorrelation and spatial association, discusses the criteria for the identification of spatial association by the use of global Moran Coefficient, Local Moran and Local Geary. Furthermore, a user-friendly statistical module, combining spatial statistical analysis methods with GIS visual techniques, is developed in Arcview using Avenue. An example is also given to show the usefulness of this module in identifying and quantifying the underlying spatial association patterns between economic units.
基金Supported by the Scientific and Technological Foundation for Special Basic Research of Chinese Academy of Tropical Agricultural Science(2012hzs1J002)the National Natural Science Foundation of China(31101465)the Research Fund for Welfare Industry(Agriculture)(201103026)~~
文摘[Objective] To introduce a convenient and easy way for the statistical anal- ysis on field efficacy trials of pesticide by using Visual Basic. [Method] The calcula- tion procedure of using Visual Basic to conduct statistical analysis on the field efficacy of pesticides was introduced, and an example was used to illustrate the usage and skill of the program. [Result] The procedure could quickly and accurately con- duct statistical analysis on the field efficacy of pesticide by only inputting initial data of the test, and it could compare the significance of differences between various fac- tors. Its calculated results were consistent with the results of the specialized statisti- cal software DPS. [Conclusion] It is a quick and simple method with high accuracy and reliability, which can greatly improve the efficiency of pesticide formulation opti- mization.
文摘The concept, fundamental theory, analytical steps and formulae of grey relational analysis (GRA)-a new statistical method or multifactorial analysis in the field of medicine were introduced. GRA of grouping sequence that is applied to medical study was built by the authors. An example was given to demonstrate it. The superiority of GRA was recounted briefly.
基金Supported by the National Natural Science Foundation of China (No.60574047) and the Doctorate Foundation of the State Education Ministry of China (No.20050335018).
文摘Abstract Data-driven tools, such as principal component analysis (PCA) and independent component analysis (ICA) have been applied to different benchmarks as process monitoring methods. The difference between the two methods is that the components of PCA are still dependent while ICA has no orthogonality constraint and its latentvariables are independent. Process monitoring with PCA often supposes that process data or principal components is Gaussian distribution. However, this kind of constraint cannot be satisfied by several practical processes. To ex-tend the use of PCA, a nonparametric method is added to PCA to overcome the difficulty, and kernel density estimation (KDE) is rather a good choice. Though ICA is based on non-Gaussian distribution intormation, .KDE can help in the close monitoring of the data. Methods, such as PCA, ICA, PCA.with .KDE(KPCA), and ICA with KDE,(KICA), are demonstrated and. compared by applying them to a practical industnal Spheripol craft polypropylene catalyzer reactor instead of a laboratory emulator.
文摘There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal component analysis, cluster analysis, factor analysis, pattern analysis, discriminant analysis, multivariate analysis of variance, correspondence analysis, canonical correlation analysis, redundancy analysis, genetic diversity analysis, and stability analysis, which involve in joint regression, additive main effects and multiplicative interactions, and genotype-by-environment interaction biplot analysis. The advanced statistical tools, such as non-parametric analysis of disease association, meta-analysis, Bayesian analysis, and decision theory, take an important place in analysis of disease dynamics. Disease forecasting methods by simulation models for plant diseases have a great potentiality in practical disease control strategies. Common mathematical tools such as monomolecular, exponential, logistic, Gompertz and linked differential equations take an important place in growth curve analysis of disease epidemics. The highly informative means of displaying a range of numerical data through construction of box and whisker plots has been suggested. The probable applications of recent advanced tools of linear and non-linear mixed models like the linear mixed model, generalized linear model, and generalized linear mixed models have been presented. The most recent technologies such as micro-array analysis, though cost effective, provide estimates of gene expressions for thousands of genes simultaneously and need attention by the molecular biologists. Some of these advanced tools can be well applied in different branches of rice research, including crop improvement, crop production, crop protection, social sciences as well as agricultural engineering. The rice research scientists should take advantage of these new opportunities adequately in adoption of the new highly potential advanced technologies while planning experimental designs, data collection, analysis and interpretation of their research data sets.
基金supposed by the Program for Science and Technology of Shandong Province (2011GHY11521)the Department of Education of Shandong Province (No. J11LB07)the Natural Science Foundation of Qingdao City (Nos. 12-1-3-52-(1)-nsh and 12-1-4-16-(7)-jch)
文摘Meretricis concha is a kind of marine traditional Chinese medicine(TCM), and has been commonly used for the treatment of asthma and scald burns. In order to investigate the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, the elemental contents of M. concha from five sampling points in Rushan Bay have been determined by means of inductively coupled plasma optical emission spectrometry(ICP-OES). Based on the contents of 14 inorganic elements(Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn), the inorganic elemental fingerprint which well reflects the elemental characteristics was constructed. All the data from the five sampling points were discriminated with accuracy through hierarchical cluster analysis(HCA) and principle component analysis(PCA), indicating that a four-factor model which could explain approximately 80% of the detection data was established, and the elements Al, As, Cd, Cu, Ni and Pb could be viewed as the characteristic elements. This investigation suggests that the inorganic elemental fingerprint combined with multivariate statistical analysis is a promising method for verifying the geographical origin of M. concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.