Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through...Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberan...Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberant acoustic space where the direct field component from the sound source dominates the total sound field rather than a diffuse field in a reverberant space which the classical SEA model assumption is based on.A corrected SEA model is proposed where the direct field component in the energy is removed and the power injected in the subsystem considers only the remaining power after the loss at first reflection.Measurement was conducted in a box divided into two rooms separated by a partition with an opening where the condition of reverberant and non-reverberant can conveniently be controlled.In the case of a non-reverberant space where acoustic material was installed inside the wall of the experimental box,the signals are corrected by eliminating the direct field component in the measured impulse response.Using the corrected SEA model,comparison of the coupling loss factor(CLF)and damping loss factor(DLF)with the theory shows good agreement.展开更多
Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a...Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.展开更多
The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the...The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the first author's affiliations,the top 7 first authors,the top 10 coauthors and also the journal evaluation indexes of the journal.It offers details of the journal to anyone interested,especially to our editorial board and our broad readers.展开更多
Taking the return series of the EU carbon allowance price, WTI crude oil price, the European renewable energy index and Shenzhen carbon emission price, Daqing crude oil price, the China securities new energy index as ...Taking the return series of the EU carbon allowance price, WTI crude oil price, the European renewable energy index and Shenzhen carbon emission price, Daqing crude oil price, the China securities new energy index as sample data, the multifractal detrend cross-correlation analysis method(MF-DCCA)is used to research the dynamic cross-correlation relationships among the carbon emission market, crude oil market and the new energy market in Europe and China and the source of the multifractality. The empirical analysis shows that the cross-correlations among the carbon emission market, crude oil market and new energy market in Europe and China have all significant multifractal characteristics. Moreover, the multifractal strength of cross-correlation between the carbon emission market and crude oil market is less than that between the carbon emission market and new energy market in Europe. The Chinese market is the opposite. In addition, the multifractal strength of cross-correlation between the crude oil market and new energy market in Europe is more than that between the crude oil market and new energy market in China. It is also found that the long-range correlation of the sequences themselves and the fat-tailed distribution in fluctuations are the common causes of the multifractality, and the fat-tailed in fluctuations distribution contributes more to the multifractals of the series.展开更多
In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experiment...In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experimental and analytical SEA (statistical energy analysis) has been applied for the prediction of air-borne noise. However, for predicting structure-borne noise, there are no definitive simulation methods that can address the soundproof specifications in an actual vehicle. Thus, in this paper, a FEM (finite element method)'SEA hybrid method is used. The FEM'SEA hybrid method predicts structure-borne noise in the middle to high frequency range. First, we explain the basic concept of the FEM'SEA hybrid method; Second, we describe our experiment to verify the analytical results of the FEM'SEA hybrid method; Third, we provide the details of the FEM model versus the FEM'SEA hybrid model; Finally, we verify the validity and availability of the FEM'SEA hybrid method through comparisons of the FEM analysis results, FEM-SEA analysis results and measured results.展开更多
In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept an...In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept and next generation smart living. Various case examples have been studied and a brief summary has been provided.Furthermore, a statistical analysis has been provided in terms of security management in smart living where it is found that young technocrats give the highest importance to security management in smart living. Last but not the least, current limitation, constraints, and future scope of security implementation have been discussed in terms of crowd energy clustered with next generation smart living.展开更多
The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are...The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.展开更多
The physiology and ecology of planktonic organisms are influenced by the concentration, chemical speciation and resulting bioavailability of some trace metals. The determination of the elemental structure of phytoplan...The physiology and ecology of planktonic organisms are influenced by the concentration, chemical speciation and resulting bioavailability of some trace metals. The determination of the elemental structure of phytoplankton is important for interpretation of physiological and functional states of coastal ecosystems. The present study is focused on the structure and elemental composition of the phytoplankton assemblages from the different coastal zones by instrumental neutron activation analysis (INAA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). For the first time these complementary techniques were simultaneously applied to study the Black Sea phytoplankton. The concentrations of 45 elements in the coastal phytoplankton communities used as bioindicator of inorganic contamination of the Black Sea coastal area near Sevastopol, Ukraine, were determined. Phytoplankton samples were collected by total tows of the plankton net with 35 μm pore size at 3 stations situated in polluted and relatively pristine water areas of the Sevastopol coastal zone during autumn period of the phytoplankton growth. The concentration of Mg, Al, Sc, Ti, V, Mn, As, Rb, Ba, Th and Fe, Cr increases exponentially from relatively pristine station to more polluted station and 10-times and 3-times greater, respectively, in the phytoplankton of the Sevastopol Bay. The rare-earth elements have relatively the same concentration values less than 1 μg/g and tend to accumulate in the phytoplankton from the polluted station in the Sevastopol Bay. The obtained results are in a good agreement with the elemental concentration data in the oceanic plankton, plankton communities from the White Sea and the Black Sea. Using energy-dispersive X-ray spectrometry the mineral particles of unknown origin and impurities of copper (0.42% by weight) in the phytoplankton at the polluted station and zinc (0.57% by weight) at the relatively pristine station were determined.展开更多
To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA)...To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.展开更多
Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing te...Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing technology is used to optimize and decrease the maximum collision force (MCF) and increase specific energy absorption (SEA) while ensure mass is not increased. Because MCF and SEA are two conflicting objectives, grey relational analysis (GRA) and principal component analysis (PCA) are employed for design optimization of the crash box. Furthermore, multi-objective analysis can convert to a single objective using the grey relational grade (GRG) simultaneously, hence, the proposed method can obtain the optimal combination of design parameters for the crash box. It can be concluded that the proposed method decreases the MCF and weight to 16.7% and 29.4% respectively, while increasing SEA to 16.4%. Meanwhile, the proposed method in comparison to the conventional NSGA-Ⅱ method, reduces the time cost by 103%. Hence, the proposed method can be properly applied to the optimization of the crash box.展开更多
We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months an...We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.展开更多
Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe...Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe) elements in the surface sediments in the northwestern sea area of Antarctic Peninsula, the authors find that the heavy minerals as the carriers of REE and trace elements should not be overlooked.Q-mode factor analysis of the heavy minerals provides a 3-factor model of the heavy mineral assemblages in the study area, which is mainly controlled by the origin of materials and sea currents. The common factor P1, composed mainly of pyroxene and metal minerals, and common factor P2, composed of hornblende, epidote and accessory minerals, represent two heavy mineral assemblages which are different from each other in both lithological characters and origin of materials. And common factor P3 probably results from mixing of two end members of the above-mentioned assemblages. R-mode group analysis of the heavy minerals indicates that there are two heavy mineral groups in the sea area, which are different from each other in both genesis and origin of materials. With the help of R-mode analysis, 22 elements are divided into 3 groups and 9 subgroups. These element assemblages show that they are genetically related and that they are different in geochemical behaviors during diagenesis and mineral-forming process. In addition, the relationship between the heavy mineral assemblages and the element subgroups is also discussed.展开更多
The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-s...The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-statistics and the Vlasov time dynamics. The analysis can describe the experimental data well all-over the considered energies and rapidity intervals. The variation of the collision parameters (chemical potential, entropy index and the time of evolution) is studied and discussed as a function of the final state temperature. According to the obtained result, a scenario, and a script of the time evolution for the particle production is simulated by the pp collision.展开更多
Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.Thi...Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.展开更多
The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direc...The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direct power flow, but also the indirect power flow. The parameters in the modified equations can be expressed by those in the classical equations when the accuracy of the predicted results is able to satisfy the needs for ellgineering.展开更多
Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is est...Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is established in the paper. The energy relationship is verified theoretically and experimentally from two similar SEA systems i.e., the structure of a coupled panel-beam and that of a coupled panel-sideframe, in the cases of conservative coupling and non-conservative coupling respectively. As an application of the method, relationship between noise power radiated from two similar cutting systems is studied. Results show that there are good agreements between the theory and the experiments, and the method is valuable to analysis of dyuamical problems associated with a complicated system from that with a simple one.展开更多
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
文摘Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
基金the financial support provided for this project by the Ministry of Higher Education Malaysia(MoHE)under Fundamental Research Grant Scheme No.FRGS/1/2016/FTK-CARE/F00323.
文摘Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberant acoustic space where the direct field component from the sound source dominates the total sound field rather than a diffuse field in a reverberant space which the classical SEA model assumption is based on.A corrected SEA model is proposed where the direct field component in the energy is removed and the power injected in the subsystem considers only the remaining power after the loss at first reflection.Measurement was conducted in a box divided into two rooms separated by a partition with an opening where the condition of reverberant and non-reverberant can conveniently be controlled.In the case of a non-reverberant space where acoustic material was installed inside the wall of the experimental box,the signals are corrected by eliminating the direct field component in the measured impulse response.Using the corrected SEA model,comparison of the coupling loss factor(CLF)and damping loss factor(DLF)with the theory shows good agreement.
基金Sponsored by the Key Project of the Development of Science and Technology of Jilin Province (20040332-1)the National"863"Project(2006AA110102-3)
文摘Statistical energy analysis (SEA) is an effective method for predicting high frequency vibro-acoustic performance of automobiles. A full vehicle SEA model is presented for interior noise reduction. It is composed of a number of subsystems based on a 3D model with all parameters for each subsystem. The excitation inputs are measured through road tests in different conditions,including inputs from the engine vibration and the sound pressure of the engine bay. The accuracy in high frequency of SEA model is validated,by comparing the analysis results with the testing pressure level data at driver's right ear. Noise contribution and sensitivity of key subsystems are analyzed. Finally,the effectiveness of noise reduction is verified. Based on the SEA model,an approach combining test and simulation is proposed for the noise vibration and harshness (NVH) design in vehicle development. It contains building the SEA model,testing for subsystem parameter identification,validating the simulation model,identifying subsystem power inputs,analyzing the design sensitivity. An example is given to demonstrate the interior noise reduction in high frequency.
文摘The paper presented the statistics and analysis on papers published on the journal 'Advanced Technology of Electrical Engineering and Energy' from 1996 to 2008: the paper acceptance rate,the paper category,the first author's affiliations,the top 7 first authors,the top 10 coauthors and also the journal evaluation indexes of the journal.It offers details of the journal to anyone interested,especially to our editorial board and our broad readers.
基金supported by the Jiangsu postgraduate research and practice innovation program (Grant No. KYCX18_1386)
文摘Taking the return series of the EU carbon allowance price, WTI crude oil price, the European renewable energy index and Shenzhen carbon emission price, Daqing crude oil price, the China securities new energy index as sample data, the multifractal detrend cross-correlation analysis method(MF-DCCA)is used to research the dynamic cross-correlation relationships among the carbon emission market, crude oil market and the new energy market in Europe and China and the source of the multifractality. The empirical analysis shows that the cross-correlations among the carbon emission market, crude oil market and new energy market in Europe and China have all significant multifractal characteristics. Moreover, the multifractal strength of cross-correlation between the carbon emission market and crude oil market is less than that between the carbon emission market and new energy market in Europe. The Chinese market is the opposite. In addition, the multifractal strength of cross-correlation between the crude oil market and new energy market in Europe is more than that between the crude oil market and new energy market in China. It is also found that the long-range correlation of the sequences themselves and the fat-tailed distribution in fluctuations are the common causes of the multifractality, and the fat-tailed in fluctuations distribution contributes more to the multifractals of the series.
文摘In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experimental and analytical SEA (statistical energy analysis) has been applied for the prediction of air-borne noise. However, for predicting structure-borne noise, there are no definitive simulation methods that can address the soundproof specifications in an actual vehicle. Thus, in this paper, a FEM (finite element method)'SEA hybrid method is used. The FEM'SEA hybrid method predicts structure-borne noise in the middle to high frequency range. First, we explain the basic concept of the FEM'SEA hybrid method; Second, we describe our experiment to verify the analytical results of the FEM'SEA hybrid method; Third, we provide the details of the FEM model versus the FEM'SEA hybrid model; Finally, we verify the validity and availability of the FEM'SEA hybrid method through comparisons of the FEM analysis results, FEM-SEA analysis results and measured results.
基金the support provided by the University of Asia Pacific and Institute for Energy, Environment, Research and Development (IEERD)
文摘In this paper, a technical and statistical analysis of security system and security management is provided for crowd energy and smart living. At the same time, a clear understanding is made for crowd energy concept and next generation smart living. Various case examples have been studied and a brief summary has been provided.Furthermore, a statistical analysis has been provided in terms of security management in smart living where it is found that young technocrats give the highest importance to security management in smart living. Last but not the least, current limitation, constraints, and future scope of security implementation have been discussed in terms of crowd energy clustered with next generation smart living.
基金Research on the Pattern of gales over the Qiongzhou Strait and Forecasting Methods, a project of Natural Science Foundation of China (40765002)Forecasting System of Gales over the Qiongzhou Strait, a key science project for Hainan province (070302)
文摘The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 34 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 rrds or above (on Beaufort scale five) in the coastal area are associated with speeds 5-6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.
文摘The physiology and ecology of planktonic organisms are influenced by the concentration, chemical speciation and resulting bioavailability of some trace metals. The determination of the elemental structure of phytoplankton is important for interpretation of physiological and functional states of coastal ecosystems. The present study is focused on the structure and elemental composition of the phytoplankton assemblages from the different coastal zones by instrumental neutron activation analysis (INAA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). For the first time these complementary techniques were simultaneously applied to study the Black Sea phytoplankton. The concentrations of 45 elements in the coastal phytoplankton communities used as bioindicator of inorganic contamination of the Black Sea coastal area near Sevastopol, Ukraine, were determined. Phytoplankton samples were collected by total tows of the plankton net with 35 μm pore size at 3 stations situated in polluted and relatively pristine water areas of the Sevastopol coastal zone during autumn period of the phytoplankton growth. The concentration of Mg, Al, Sc, Ti, V, Mn, As, Rb, Ba, Th and Fe, Cr increases exponentially from relatively pristine station to more polluted station and 10-times and 3-times greater, respectively, in the phytoplankton of the Sevastopol Bay. The rare-earth elements have relatively the same concentration values less than 1 μg/g and tend to accumulate in the phytoplankton from the polluted station in the Sevastopol Bay. The obtained results are in a good agreement with the elemental concentration data in the oceanic plankton, plankton communities from the White Sea and the Black Sea. Using energy-dispersive X-ray spectrometry the mineral particles of unknown origin and impurities of copper (0.42% by weight) in the phytoplankton at the polluted station and zinc (0.57% by weight) at the relatively pristine station were determined.
基金Science and Technology Support Planning of Jiangsu Province(No.BE2014133)the Open Foundation of Key Laboratory of Underw ater Acoustic Signal Processing(No.UASP1301)the Prospective Joint Research Project of Jiangsu province(No.BY2014127-01)
文摘To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.
基金Supported by the National Key Research and Development Project(2016YFB0101601)
文摘Crashworthiness and lightweight optimization design of the crash box are studied in this paper. For the initial model, a physical test was performed to verify the model. Then, a parametric model using mesh morphing technology is used to optimize and decrease the maximum collision force (MCF) and increase specific energy absorption (SEA) while ensure mass is not increased. Because MCF and SEA are two conflicting objectives, grey relational analysis (GRA) and principal component analysis (PCA) are employed for design optimization of the crash box. Furthermore, multi-objective analysis can convert to a single objective using the grey relational grade (GRG) simultaneously, hence, the proposed method can obtain the optimal combination of design parameters for the crash box. It can be concluded that the proposed method decreases the MCF and weight to 16.7% and 29.4% respectively, while increasing SEA to 16.4%. Meanwhile, the proposed method in comparison to the conventional NSGA-Ⅱ method, reduces the time cost by 103%. Hence, the proposed method can be properly applied to the optimization of the crash box.
基金National Science Fund Project of Guangdong Province (04102749) Ocean Science andTechnology Director General Fund Project of the South China Sea Branch
文摘We statistically analyze the tropical typhoon forming in the South China Sea and use TC (Tropical Cyclone) for short in the following) by typhoon yearbook. The typhoon quantity is very different in different months and years. TC appears in all months except March, and the most TC quantity in a year is 11, the least is 1 and 6.2 on average. The most TC quantity in a month is 5 and the least is 0. TC lands most in August and no TC lands on Chinese continent from December to the following April. The primary landing area is between Shantou and Hainan Island. The sustaining period of TC is usually between 4 days to 7days, and the longest is 19 days. Only 15% of the TC forming in the South China Sea can intensify to typhoon, and they all form in the ocean area deeper than 150m. The South China Sea is the ocean area over which the TC occurs frequently.
文摘Based on the analysis and mathematical statistics of quantitative data on both the heavy minerals and their REE (La, Ce, Nd, Sm, Eu, Tb, Yb, Lu), trace (Zr, Hf, Th, Ta, U, Rb, Sr, Zn, Co, Ni, Cr, As, Sc) and major (Fe) elements in the surface sediments in the northwestern sea area of Antarctic Peninsula, the authors find that the heavy minerals as the carriers of REE and trace elements should not be overlooked.Q-mode factor analysis of the heavy minerals provides a 3-factor model of the heavy mineral assemblages in the study area, which is mainly controlled by the origin of materials and sea currents. The common factor P1, composed mainly of pyroxene and metal minerals, and common factor P2, composed of hornblende, epidote and accessory minerals, represent two heavy mineral assemblages which are different from each other in both lithological characters and origin of materials. And common factor P3 probably results from mixing of two end members of the above-mentioned assemblages. R-mode group analysis of the heavy minerals indicates that there are two heavy mineral groups in the sea area, which are different from each other in both genesis and origin of materials. With the help of R-mode analysis, 22 elements are divided into 3 groups and 9 subgroups. These element assemblages show that they are genetically related and that they are different in geochemical behaviors during diagenesis and mineral-forming process. In addition, the relationship between the heavy mineral assemblages and the element subgroups is also discussed.
文摘The data of charged particles produced in proton-proton collisions extracted from Durham particle data group at energy ranges √s = 6.3 - 17 GeV and at 0.9 - 7 TeV are investigated in the framework of Tsallis thermo-statistics and the Vlasov time dynamics. The analysis can describe the experimental data well all-over the considered energies and rapidity intervals. The variation of the collision parameters (chemical potential, entropy index and the time of evolution) is studied and discussed as a function of the final state temperature. According to the obtained result, a scenario, and a script of the time evolution for the particle production is simulated by the pp collision.
基金The National Natural Science Foundation of China under contract Nos 42376236 and 42176226.
文摘Owing to the significant differences in environmental characteristics and explanatory factors among estuarine and coastal regions,research on diatom transfer functions and database establishment remains incomplete.This study analysed diatoms in surface sediment samples and a sediment core from the Lianjiang coast of the East China Sea,together with environmental variables.Principal component analysis of the environmental variables showed that sea surface salinity(SSS)and sea surface temperature were the most important factors controlling hydrological conditions in the Lianjiang coastal area,whereas canonical correspondence analysis indicated that SSS and pH were the main environmental factors affecting diatom distribution.Based on the modern diatom species–environmental variable database,we developed a diatom-based SSS transfer function to quantitatively reconstruct the variability in SSS between 1984 and 2021 for sediment core HK3 from the Lianjiang coastal area.The agreement between the reconstructed SSS and instrument SSS data from 1984 to 2021 suggests that diatombased SSS reconstruction is reliable for studying past SSS variability in the Lianjiang coastal area.Three low SSS events in AD 2019,2013,and 1999,together with an increased relative concentration of freshwater diatom species and coarser sediment grain sizes,corresponded to two super-typhoon events and a catastrophic flooding event in Lianjiang County.Thus,a diatom-based SSS transfer function for reconstructing past SSS variability in the estuarine and coastal areas of the East China Sea can be further used to reflect the paleoenvironmental events in this region.
文摘The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direct power flow, but also the indirect power flow. The parameters in the modified equations can be expressed by those in the classical equations when the accuracy of the predicted results is able to satisfy the needs for ellgineering.
基金supported by the Natural Science Foundation of Shandong Province of China.
文摘Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is established in the paper. The energy relationship is verified theoretically and experimentally from two similar SEA systems i.e., the structure of a coupled panel-beam and that of a coupled panel-sideframe, in the cases of conservative coupling and non-conservative coupling respectively. As an application of the method, relationship between noise power radiated from two similar cutting systems is studied. Results show that there are good agreements between the theory and the experiments, and the method is valuable to analysis of dyuamical problems associated with a complicated system from that with a simple one.