The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal prote...The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.展开更多
The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equation...The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.展开更多
This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elemen...This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.展开更多
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu...Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.展开更多
The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dim...The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.展开更多
In this study, laminar convective heat transfer over two heated wall-mounted cubes is investigated.Two cubes, which are under constant heat flux, are placed in different tandem and staggeredarrangements ...In this study, laminar convective heat transfer over two heated wall-mounted cubes is investigated.Two cubes, which are under constant heat flux, are placed in different tandem and staggeredarrangements on a base plate. This problem is studied for different streamwise and spanwisedistances between two cubes in different Renolds number (Re), by using finite-volume method.Effects of these parameters are considered on flow and heat transfer characteristics. The resultsshow that the temperature distribution is strongly dependent on flow structure and varies with anychange of flow pattern in different arrangements of cubes. In addition, it is observed that the dragcoefficient, which is influenced more by pressure forces, in staggered arrangement, is greater thantandem arrangement. Results show that by increasing the spanwise distance the amount of meanNusselt number (Nu) of Cube 2 becomes the same as Cube 1.展开更多
By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreadi...By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.展开更多
In this paper, the entransy functions for steady heat transfer are summarized and discussed based on the variational theory and the entransy theory. The entransy functions for steady convective heat transfer are deriv...In this paper, the entransy functions for steady heat transfer are summarized and discussed based on the variational theory and the entransy theory. The entransy functions for steady convective heat transfer are derived for the first time. In steady heat transfer processes, it is shown that the steady distributions of heat flux and temperature(radiative thermal potential) should make the corresponding entransy functions reach their minimum values when the temperature(radiative thermal potential) or the heat flux of the boundary is given. The extremum entransy dissipation principles and the minimum entransy-dissipation-based thermal resistance principles are compared with the entransy functions. It is shown that the entransy functions can describe a steady state,but cannot directly give a way to optimize heat transfer processes, while the extremum entransy dissipation principles and the minimum entransy-dissipation-based thermal resistance principles act in an opposite way.展开更多
文摘The energy equilibrium equation and discrete ordinate methods are combined to establish the one-dimensional steady heat transfer mathematical model of multi-layer thermal insulations (MTIs) in metallic thermal protection systems. The inverse problem of heat transfer is solved by the genetic algorithm and data from the steady heat transfer experiment of fibrous thermal insulations. The density radiation attenuation coefficient, the albedo of fibrous thermal insulations and the surface emissivity of reflective screens are optimized. Finally, the one-dimensional steady heat transfer model of MTIs with optimized thermal physical parameters is verified by experimental data of the effective MTI conductivity.
文摘The two-dimensional steady flow of an incompressible second-order viscoelastic fluid between two parallel plates was studied in terms of vorticity, the stream function and temperature equations. The governing equations were expanded with respect to a snmll parameter to get the zeroth- and first-order approximate equations. By using the differenl2al quadrature method with only a few grid points, the high-accurate numerical results were obtained.
文摘This paper describes a new method of calculation of one-dimensional steady compressible gas flows in channels with possible heat and mass exchange through perforated sidewalls. The channel is divided into small elements of a finite size for which mass, energy and momentum conservation laws are written in the integral form, assuming linear distribution of the parameters along the length. As a result, the calculation is reduced to finding the roots of a quadratic algebraic equation, thus providing an alternative to numerical methods based on differential equations. The advantage of this method is its high tolerance to coarse discretization of the calculation area as well as its good applicability for transonic flow calculations.
文摘Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions.
文摘The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.
文摘In this study, laminar convective heat transfer over two heated wall-mounted cubes is investigated.Two cubes, which are under constant heat flux, are placed in different tandem and staggeredarrangements on a base plate. This problem is studied for different streamwise and spanwisedistances between two cubes in different Renolds number (Re), by using finite-volume method.Effects of these parameters are considered on flow and heat transfer characteristics. The resultsshow that the temperature distribution is strongly dependent on flow structure and varies with anychange of flow pattern in different arrangements of cubes. In addition, it is observed that the dragcoefficient, which is influenced more by pressure forces, in staggered arrangement, is greater thantandem arrangement. Results show that by increasing the spanwise distance the amount of meanNusselt number (Nu) of Cube 2 becomes the same as Cube 1.
文摘By placing a sample between a heated and a cooled rod, a thermal conductivity of the sample can be evaluated easily with the assumption of a one-dimensional heat flow. However, a three-dimensional constriction/spreading heat flow may occur inside the rods when the sample is a composite having different thermal conductivities. In order to investigate the thermal resistance due to the constriction/spreading heat flow, the three-dimensional numerical analyses were conducted on the heat transfer characteristics of the rods. In the present analyses, a polymer-based composite board having thermal vias was sandwiched between the rods. From the numerical results, it was confirmed that the constriction/spreading resistance of the rods was strongly affected by the thermal conductivity of the rods as well as the number and size of the thermal vias. A simple equation was also proposed to evaluate the constriction/spreading resistance of the rods. Fairly good agreements were obtained between the numerical results and the calculated ones by the simple equation. Moreover, the discussion was also made on an effective thermal conductivity of the composite board evaluated with the heated and the cooled rod.
基金supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51621062)
文摘In this paper, the entransy functions for steady heat transfer are summarized and discussed based on the variational theory and the entransy theory. The entransy functions for steady convective heat transfer are derived for the first time. In steady heat transfer processes, it is shown that the steady distributions of heat flux and temperature(radiative thermal potential) should make the corresponding entransy functions reach their minimum values when the temperature(radiative thermal potential) or the heat flux of the boundary is given. The extremum entransy dissipation principles and the minimum entransy-dissipation-based thermal resistance principles are compared with the entransy functions. It is shown that the entransy functions can describe a steady state,but cannot directly give a way to optimize heat transfer processes, while the extremum entransy dissipation principles and the minimum entransy-dissipation-based thermal resistance principles act in an opposite way.