Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone fe...Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.展开更多
Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. Th...Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan...A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.展开更多
This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR cont...This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR controller. Further more, this paper develops a new order reduction method: slow-fast mode order reduction (SFMOR) method. This order reduction method is particularly effective for those controllers whose modes can be divided into a slow part and a fast part according to their velocities. Application of these methods to a benchmark example and a certain turbofan engine is described.展开更多
An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagno...An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model(CLM) based on Long Short-Term Memory(LSTM) Neural Network(NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method.展开更多
A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed...A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed control system includes four parts,namely a predictive model,rolling optimization,online correction,and feedback correction.Considering the strong nonlinearity of engine,a predictive model is established by Back Propagation(BP)neural network for the entire flight envelope,whose input and output are determined with random forest algorithm and actual situation analysis.Rolling optimization typically uses SQP as the optimization algorithm,but SQP algorithm is easy to trap into local optimization.Therefore,the fuzzy-SQP algorithm is proposed to prevent this disadvantage using fuzzy algorithm to determine the initial value of SQP.In addition to the traditional three parts of model predictive control,an online correction module is added to improve the predictive accuracy of the predictive model in the predictive time domain.Simulation results show that the BP predictive model can reach a certain degree of predictive accuracy,and the proposed control system can achieve good tracking performance with the limited parameters within the safe range。展开更多
A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this...A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this scheme,each sub-region of the operating envelope had its own MRAC controller,and smooth indicator function based smooth switching scheme was introduced to switch multiple controllers smoothly at the boundary of adjacent sub-regions.The Lyapunov stability analysis indicated that the proposed smooth switching scheme can guarantee the convergence of the closed-loop system during the controllers switching.The tracking error system was converted into a switched system to analyze the global stability of the closed-loop system.The advantage of the method was that the chattering of system output and instability caused by asynchronous switching can be eliminated.The simulation illustrates the effectiveness of the proposed control scheme in comparison with the existing MRAC controller with gain scheduling for turbofan engine.展开更多
Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which som...Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which sometimes cannot be measured in engineering. The most typical one is the High-Pressure Turbine(HPT) exit pressure, which is vital to distinguishing failure modes between different turbines. For the case of an abrupt failure occurring in a single turbine component, a model-based sensor measurement reconstruction method is proposed in this paper. First,to estimate the missing measurements, the forward algorithm and the backward algorithm are developed based on corresponding component models according to the failure hypotheses. Then,a new fault diagnosis logic is designed and the traditional nonlinear filter is improved by adding the measurement estimation module and the health parameter correction module, which uses the reconstructed measurement to complete the health parameters estimation. Simulation results show that the proposed method can well restore the desired measurement and the estimated measurement can be used in the turbofan engine gas path diagnosis. Compared with the diagnosis under the condition of missing sensors, this method can distinguish between different failure modes, quantify the variations of health parameters, and achieve good performance at multiple operating points in the flight envelope.展开更多
A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for...A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.展开更多
文摘Difficulties in obtaining component characteristics in the sub-idle state of rotor constrain the simulation capabilities of ground and windmill start-up processes for turbofan engines.This paper proposes a backbone feature method based on conventional characteristics parameters to derive the full-state characteristics of fan.The application of the fan’s full-state characteristics in component-level model of turbofan engine enables zero-speed iterative simulation for ground start-up process and windmill simulation for windmill start-up process,thereby improving the simulation capability of sub-idle state during turbofan engine start-up.
文摘Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
文摘A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.
文摘This paper proposes a new loop recovery method to solve the reduced order problem of H∞/ LTR method. The resulted lower order controller shares almost the same performance and robustness as the original H ∞/LTR controller. Further more, this paper develops a new order reduction method: slow-fast mode order reduction (SFMOR) method. This order reduction method is particularly effective for those controllers whose modes can be divided into a slow part and a fast part according to their velocities. Application of these methods to a benchmark example and a certain turbofan engine is described.
基金co-supported by the National Natural Science Foundation of China(Nos.61903061,61903059 and 61890925)Natural Science Foundation of Liaoning Province,China(No.2020-MS-098)+1 种基金Aeronautical Science Foundation of China(No.20200013063001)the Fundamental Research Funds for the Central Universities,China(No.DUT20JC22)。
文摘An accurate and reliable turbofan engine model which can describe its dynamic behavior within the full flight envelop and lifecycle plays a critical role in performance optimization, controller design and fault diagnosis. However, due to the performance differences caused by the tolerance of engine manufacturing and assembly, and performance degradation during continuously stringent environmental regulations, the model accuracy is severely reduced. In this paper, an adaptive modification method of turbofan engine nonlinear Component-Llevel Model(CLM) based on Long Short-Term Memory(LSTM) Neural Network(NN) and hybrid optimization algorithm is pro-posed. First, a dynamic compensator with a combined LSTM NN architecture is constructed to compensate for the initial error between the experimental data and CLM of a turbofan engine under health condition. Then, a sensitivity analysis approach based on the entropy coefficient and technique for order preference by similarity to an ideal solution integrated evaluation is developed to choose the unmeasurable health parameters to be adjusted. Finally, a parallel hybrid optimization algorithm is developed to complete the adaptive model modification when the performance degrades. The proposed method is verified on a military low-bypass twin-spool turbofan engine, and the experimental results show the effectiveness of the proposed method.
基金supported by the Fundamental Research Enhancement Project,China(No.2017-JCJQ-ZD-047-21).
文摘A nonlinear model predictive control method based on fuzzy-Sequential Quadratic Programming(SQP)for direct thrust control is proposed in this paper for the sake of improving the accuracy of thrust control.The designed control system includes four parts,namely a predictive model,rolling optimization,online correction,and feedback correction.Considering the strong nonlinearity of engine,a predictive model is established by Back Propagation(BP)neural network for the entire flight envelope,whose input and output are determined with random forest algorithm and actual situation analysis.Rolling optimization typically uses SQP as the optimization algorithm,but SQP algorithm is easy to trap into local optimization.Therefore,the fuzzy-SQP algorithm is proposed to prevent this disadvantage using fuzzy algorithm to determine the initial value of SQP.In addition to the traditional three parts of model predictive control,an online correction module is added to improve the predictive accuracy of the predictive model in the predictive time domain.Simulation results show that the BP predictive model can reach a certain degree of predictive accuracy,and the proposed control system can achieve good tracking performance with the limited parameters within the safe range。
文摘A model reference adaptive control(MRAC)with smooth switching scheme was proposed for piecewise linear systems,and the method was utilized in turbofan engine control to avoid the discontinuity of control input.In this scheme,each sub-region of the operating envelope had its own MRAC controller,and smooth indicator function based smooth switching scheme was introduced to switch multiple controllers smoothly at the boundary of adjacent sub-regions.The Lyapunov stability analysis indicated that the proposed smooth switching scheme can guarantee the convergence of the closed-loop system during the controllers switching.The tracking error system was converted into a switched system to analyze the global stability of the closed-loop system.The advantage of the method was that the chattering of system output and instability caused by asynchronous switching can be eliminated.The simulation illustrates the effectiveness of the proposed control scheme in comparison with the existing MRAC controller with gain scheduling for turbofan engine.
基金supported by the Fundamental Research Funds for the Central Universities(NO.NS2018018)
文摘Aero-engine gas path health monitoring plays a critical role in Engine Health Management(EHM). To achieve unbiased estimation, traditional filtering methods have strict requirements on measurement parameters which sometimes cannot be measured in engineering. The most typical one is the High-Pressure Turbine(HPT) exit pressure, which is vital to distinguishing failure modes between different turbines. For the case of an abrupt failure occurring in a single turbine component, a model-based sensor measurement reconstruction method is proposed in this paper. First,to estimate the missing measurements, the forward algorithm and the backward algorithm are developed based on corresponding component models according to the failure hypotheses. Then,a new fault diagnosis logic is designed and the traditional nonlinear filter is improved by adding the measurement estimation module and the health parameter correction module, which uses the reconstructed measurement to complete the health parameters estimation. Simulation results show that the proposed method can well restore the desired measurement and the estimated measurement can be used in the turbofan engine gas path diagnosis. Compared with the diagnosis under the condition of missing sensors, this method can distinguish between different failure modes, quantify the variations of health parameters, and achieve good performance at multiple operating points in the flight envelope.
基金supported by National Science and Technology Major Project of China(No.2017-V-0004-0054)。
文摘A new limit protection method based on Scheduling Command Governor(SCG) is proposed for imposing multiple constraints on a turbofan engine during acceleration process. A Gain Scheduling Controller(GSC) is designed for the transient state control and its stability proof is developed using Linear Matrix Inequalities(LMIs). The SCG is an add-on control scheme which manages engine limits effectively based on reference trajectory optimization. Unlike the traditional min–max architecture with switching logic, the SCG method utilizes the Linear Parameter Varying(LPV) closed-loop model to form a prediction of future constraint violation and per instant solves a constraint-admissible reference within an approximate Maximal Output Admissible Set(MOAS).The influence of the variation of engine dynamic characteristics and equilibrium points during transient state control is handled by the design of contractive sets. Simulation results on a turbofan engine component-level model show the applicability and effectiveness of the SCG method. Compared to the traditional min–max method, the SCG method has less conservativeness. In addition,the design of contractive sets makes conservativeness tunable.