Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ...Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.展开更多
The study addresses an urgent and globally significant issue of climate change by focusing on the detailed spatial and temporal analysis of temperature trends in Northern Sudan. It fills a critical research gap by pro...The study addresses an urgent and globally significant issue of climate change by focusing on the detailed spatial and temporal analysis of temperature trends in Northern Sudan. It fills a critical research gap by providing localized data over a substantial period (1990-2019), which could help in understanding the nuanced impacts of climate change in Sahel regions like Northern Sudan. In addition, the comprehensive coverage of both spatial and temporal dimensions, supported by a substantial dataset from five meteorological stations, provides a thorough understanding of the subject area. The utilization of robust statistical methods (Mann-Kendall test and Sen’s slope analysis) for analyzing temperature trends adds scientific rigor and credibility to the findings. Our results reveal a consistently increasing trend in maximum temperatures across most stations, particularly during the hot season (AMJ). However, the wet season (JAS) shows high maximum temperatures but no significant trend. Moreover, significant increasing trends in minimum temperatures were observed in all stations except Abu Hamed, where the trend, although increasing, did not reach statistical significance during the hot and cold seasons, and the coldest temperatures were observed during the cold season. These findings underscore the complex temperature dynamics in Northern Sudan and highlight the need for continued monitoring and adaptive measures in response to ongoing climate changes in the region.展开更多
The characteristics of the temperature variation in Baoji City were analyzed with the temperature data from 1952 to 2003.The results showed that the value of annual average temperature and seasonal average temperature...The characteristics of the temperature variation in Baoji City were analyzed with the temperature data from 1952 to 2003.The results showed that the value of annual average temperature and seasonal average temperature wavily rose before 1980 and obviously ascended after 1980.During the period of last 52 years,there was a process of ascent-descent-ascent in summer seasonal temperature variation.While in autumn and winter,the temperature decreased at first and then increased.The steady ascent of the temperature in summer season had a great contribution to the increment of its average temperature.The type of the variation trend in the average temperature in Baoji in recent 52 years was verified according to the results.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
In this paper,based on the observation data of air temperature during 1951-2009 in Shenyang,the interannual and interdecadal variation of annual average temperature,maximum and minimum temperature in Shenyang were con...In this paper,based on the observation data of air temperature during 1951-2009 in Shenyang,the interannual and interdecadal variation of annual average temperature,maximum and minimum temperature in Shenyang were conducted the statistical analysis by means of linear trend estimation and mutation detection by using Mann-Kendall method.As was demonstrated in the results,the annual average temperature,maximum and minimum temperature in Shenyang showed an upward trend,whose linear tendency rate was 0.231,0.181 and 0.218 respectively.The increment trend of annual average temperature,maximum and minimum temperature was extremely clear.The increase in minimum temperature was more significant than that in mean temperature and maximum temperature.The abrupt change point of annual mean temperature in Shenyang appeared in 1981;the abrupt change point of annual mean maximum temperature appeared in 1994;the annual mean minimum temperature underwent mutation in 1978.展开更多
By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation...By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.展开更多
Period and space distribution characteristics of high temperature (above 35 ℃) at 7 weather stations in Shenyang City from 1951 to 2008 were analyzed in this study.The results revealed that the occurrence period of h...Period and space distribution characteristics of high temperature (above 35 ℃) at 7 weather stations in Shenyang City from 1951 to 2008 were analyzed in this study.The results revealed that the occurrence period of high temperature in northern Shenyang was longer than the southern and eastern parts.The northwestern part had the most days of high temperature,the southeastern part came next,and the mid-eastern and southwestern parts had the least.The distribution characteristics of high temperature period were increasing frequency,enhanced intensity and expanded range after 1990s.The occurrence frequency of high temperature was the highest in June and the lowest in August.The hot late summer weather in the middle period of August in 2009 was caused by anomaly atmospheric circulation and subtropical high pressure (stronger and the more westward).展开更多
Landsat TM data(June 23,1988,May 6,2007) and Landsat ETM+data(May 10,2000) of Neijiang City,Sichuan Province was taken as the data source,brightness temperature of the study area was obtained by using TM/ETM+thermal i...Landsat TM data(June 23,1988,May 6,2007) and Landsat ETM+data(May 10,2000) of Neijiang City,Sichuan Province was taken as the data source,brightness temperature of the study area was obtained by using TM/ETM+thermal infrared wave,and also normalized difference vegetation index(NDVI) was calculated.NDVI of the study area on June 23,1988,May 6,2007,and May 10,2000 was respectively obtained by using Band Math,the least square fitting was adopted to simulate the correlation between surface temperature and vegetation cover.Moreover,linear regression analysis of the correlation between vegetation cover and NDVI was carried out in Excel.The results showed that(a) most of the constructed area has a low NDVI value because there are large areas of hard surface such as buildings and roads,but less vegetation cover;(b) the quarters with better vegetation cover have higher NDVI values;the Tuojiang River has a negative NDVI value;rural areas have better vegetation cover and higher NDVI values.Brightness temperature and vegetation cover has distinct negative correlation,specifically,the higher the vegetation cover is,the lower the surface temperature is,and vice versa.展开更多
By selecting the daily maximum temperatures during 1961-2005 in 35 representative stations in Liaoning Province, the temporal and spatial distribution characteristics of extremely maximum temperature event were studie...By selecting the daily maximum temperatures during 1961-2005 in 35 representative stations in Liaoning Province, the temporal and spatial distribution characteristics of extremely maximum temperature event were studied. By using REOF, the mean-square deviation and so on, the variation and distribution situation of extremely maximum temperature in the different regions of Liaoning were reflected. The results showed that the extremely maximum temperature in Liaoning Province could be divided into 3 regions where were respectively the northeast area, the west and the northwest area, the south and the southeast area. The distribution characteristic of extremely maximum temperature threshold value in Liaoning Province was basically consistent with the distribution characteristic of average temperature. The zone where the extremely maximum temperature threshold was relatively high was in the northwest area of Liaoning, and the low threshold zone was in the southeast area and most areas in the east. The variation of extremely maximum temperature in winter was the greatest and in summer was the smallest. The variation of extremely maximum temperature days was the greatest in summer and wasn’t great in spring, autumn, winter.展开更多
Based on the mean monthly temperature and precipitation data of East China from 1951 to 2006,we conducted the analysis.The results showed that the mean annual temperature tended to increase in the past 56 years while ...Based on the mean monthly temperature and precipitation data of East China from 1951 to 2006,we conducted the analysis.The results showed that the mean annual temperature tended to increase in the past 56 years while the variation trend of monthly average temperature was different from the annual one.The obvious increase in temperature happened in early spring and from late autumn to winter.The decrease in temperature happened in summer(August).The precipitation change was not as remarkable as the change in temperature.On the whole,the phase of precipitation change was slightly ahead of temperature change.Continuous wavelet transformation was used to analyze the time-frequency changes of precipitation and temperature in East China and the periodical vibration at different times was obtained.展开更多
Based on the observed 2-year temperature data for four kinds of typical urban underlying surfaces,including asphalt, cement, bare land and grass land, the annual variations and influencing factors of landsurface tempe...Based on the observed 2-year temperature data for four kinds of typical urban underlying surfaces,including asphalt, cement, bare land and grass land, the annual variations and influencing factors of landsurface temperature are analyzed. Then fitting equations for surface temperature are established. It is shownthat the annual variation of daily average, maximum and minimum temperature and daily temperature rangeon the four urban underlying surfaces is consistent with the change in air temperature. The difference oftemperature on different underlying surfaces in the summer half year (May to October) is much moreevident than that in the winter half year (December to the following April). The daily average and maximumtemperatures of asphalt, cement, bare land and grass land are higher than air temperature due to theatmospheric heating in the daytime, with that of asphalt being the highest, followed in turn by cement, bareland and grass land. Moreover, the daily average, maximum and minimum temperature on the four urbanunderlying surfaces are strongly impacted by total cloud amount, daily average relative humidity andsunshine hours. The land surface can be cooled (warmed) by increased total cloud amount (relativehumidity). The changes in temperature on bare land and grass land are influenced by both the total cloudamount and the daily average relative humidity. The temperature parameters of the four land surfaces aresignificantly correlated with daily average, maximum and minimum temperature, sunshine hours, dailyaverage relative humidity and total cloud amount, respectively. The analysis also indicates that the range offitting parameter of a linear regression equation between the surface temperature of the four kinds of typicalland surface and the air temperature is from 0.809 to 0.971, passing the F-test with a confidence level of 0.99.展开更多
To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is u...To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation.展开更多
Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the...Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.展开更多
[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipita...[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipitation data of four routine meteorological stations in Benxi area from 1953 to 2010,by using linear tendency rate,linear regression equation,wavelet analysis,Mann-Kendall detection and so on,the variation characteristics of temperature and precipitation under the background of climate warming in the area were analyzed.[Result] The annual average temperature during 1953-2010 in Benxi area presented rise trend,and the linear tendency rate was 0.28 ℃/10 a.It was temperature increase trend in four seasons.The temperature rise rate in winter was the maximum and was the minimum in summer.The annual rainfall presented decrease trend,and the linear tendency rate was-18.16 mm/10 a.Except in spring,it was decrease trend in other seasons.Mann-Kendall mutation detection showed that the mutation of annual average temperature in Benxi area in recent 58 years appeared in 1986.There was no mutation phenomenon in summer.Spring mutation appeared in 1974,and autumn mutation appeared in 1987.Winter mutation was in 1981.The annual and seasonal precipitation didn’t have the mutation phenomenon.The wavelet analysis found that the annual average temperature had the periodic variations of 12-14,5-6 and 2 years in Benxi area in recent 58 years.The annual rainfall had the periodic fluctuations of 8-12,5-6 and 2 years.[Conclusion] The research provided the scientific basis for exploration and sustainable development of the climate resources in the mountain area.展开更多
[Objective] The research aimed to study the seasonal variation characteristics of precipitation and temperature in China during 1951-1999. [Method] Based on the monthly average precipitation and temperature data in 16...[Objective] The research aimed to study the seasonal variation characteristics of precipitation and temperature in China during 1951-1999. [Method] Based on the monthly average precipitation and temperature data in 160 stations from January, 1951 to February, 1999, which were provided by China Meteorological Administration, the spatial-temporal variation characteristics of precipitation and temperature in 48 years were studied by using SEOF method. [Result] SEOF analysis of precipitation:SEOF analysis of the first modal showed the four-season propulsion of rain belt in China from south to north. Seen from the time coefficient, as a whole, the precipitation in China decreased slightly during the 1960s-1970s. After the 1970s, the precipitation had the increase trend and was the decrease trend after the 1980s. SEOF analysis of temperature:the first modals of precipitation and temperature configured well in the space. In the dry zone where the precipitation was less, the temperature variation was obvious. Seen from the time sequence, the temperature in China during 1951-1999 was low, and it was the low temperature period in the 1950s. The temperature rose slightly during the 1950s-1960s, and it entered into the low temperature period again from the middle and latter periods of 1960s to early the 1970s. From the metaphase of 1970s to the end of 1990s, the temperature increased relatively and stably. [Conclusion] The research provided the theory basis for studying the climate variation in China.展开更多
In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of th...In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.展开更多
During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-pus...During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-puss weld-based rapid prototyping are investigated using three-dimensional finite element models presented. The single-puss weld-bused rapid prototyping experiment is carried out. Thermal cycles calculated agree with experimental measurements. Furthermore, simulated results indicate that there exist the pre-heating effect of the fore layer and the post-heating effect of the rear layer in the multi-layer multi-pass weld-based rapid prototyping. In the first layer, the heat accumulates obviously. After the first layer, the dimension increase of the high temperature region behind the molten pool is not obvious. The heat diffusion condition in the first layer is the best, the heat diffusion condition in the second layer is the worst, and the heat diffusion conditions in the higher layers improve gradually.展开更多
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3...A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.展开更多
The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes...The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes and their Role in Climate(SPARC).The results showed distinct variations in the wind and temperature fields at different heights from the 1960s to the 1990s.The overall zonal wind speed showed a significant increasing trend with the year,and the overall change in meridional wind speed showed a falling trend from 1976 to 1990,whereas the temperature field showed a significant cooling trend from 1964 to 1990.The times the trends mutated varied at different levels.By taking the altitudes at 20,35,and 50 km as representatives,we found that the zonal wind speed trend had mutated in 1988,1986,and 1986,respectively;that the meridional wind speed trend had mutated in 1990,1986,and 1990,respectively;and that the temperature trend had mutated separately in 1977,1973,and 1967,respectively.Characteristics of the periodic wind and temperature field variations at different heights were also analyzed,and obvious differences were found in time scale variations across the different layers.The zonal and meridional wind fields were basically characterized as having a significant periodic variation of 5 years across the three layers,and each level was characterized as having a periodic variation of less than 5 years.Temperature field variation at the three levels was basically characterized as occurring in 10-year and 5-year cycles.展开更多
基金Project supported by the National Natural Science Foundation of China (No.12172001)the Anhui Provincial Natural Science Foundation of China (No.2208085Y01)+1 种基金the University Natural Science Research Project of Anhui Province of China (No.2022AH020029)the Housing and Urban-Rural Development Science and Technology Project of Anhui Province of China (No.2023-YF129)。
文摘Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials.
文摘The study addresses an urgent and globally significant issue of climate change by focusing on the detailed spatial and temporal analysis of temperature trends in Northern Sudan. It fills a critical research gap by providing localized data over a substantial period (1990-2019), which could help in understanding the nuanced impacts of climate change in Sahel regions like Northern Sudan. In addition, the comprehensive coverage of both spatial and temporal dimensions, supported by a substantial dataset from five meteorological stations, provides a thorough understanding of the subject area. The utilization of robust statistical methods (Mann-Kendall test and Sen’s slope analysis) for analyzing temperature trends adds scientific rigor and credibility to the findings. Our results reveal a consistently increasing trend in maximum temperatures across most stations, particularly during the hot season (AMJ). However, the wet season (JAS) shows high maximum temperatures but no significant trend. Moreover, significant increasing trends in minimum temperatures were observed in all stations except Abu Hamed, where the trend, although increasing, did not reach statistical significance during the hot and cold seasons, and the coldest temperatures were observed during the cold season. These findings underscore the complex temperature dynamics in Northern Sudan and highlight the need for continued monitoring and adaptive measures in response to ongoing climate changes in the region.
基金Supported by Fund of Teacher Education Innovation Platform in Southwest University
文摘The characteristics of the temperature variation in Baoji City were analyzed with the temperature data from 1952 to 2003.The results showed that the value of annual average temperature and seasonal average temperature wavily rose before 1980 and obviously ascended after 1980.During the period of last 52 years,there was a process of ascent-descent-ascent in summer seasonal temperature variation.While in autumn and winter,the temperature decreased at first and then increased.The steady ascent of the temperature in summer season had a great contribution to the increment of its average temperature.The type of the variation trend in the average temperature in Baoji in recent 52 years was verified according to the results.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
基金Supported by the Infrastructure Project of China Meteorological Administration(CMA) in 2010~~
文摘In this paper,based on the observation data of air temperature during 1951-2009 in Shenyang,the interannual and interdecadal variation of annual average temperature,maximum and minimum temperature in Shenyang were conducted the statistical analysis by means of linear trend estimation and mutation detection by using Mann-Kendall method.As was demonstrated in the results,the annual average temperature,maximum and minimum temperature in Shenyang showed an upward trend,whose linear tendency rate was 0.231,0.181 and 0.218 respectively.The increment trend of annual average temperature,maximum and minimum temperature was extremely clear.The increase in minimum temperature was more significant than that in mean temperature and maximum temperature.The abrupt change point of annual mean temperature in Shenyang appeared in 1981;the abrupt change point of annual mean maximum temperature appeared in 1994;the annual mean minimum temperature underwent mutation in 1978.
基金Supported by The Special Foundation of Chinese Meteorological Bureau Climate Changes Program(200920)The Special Foundation of Hunan Major Scientific and Technological Research Program(2008FJ1006)~~
文摘By dint of the summer precipitation data from 21 stations in the Dongting Lake region during 1960-2008 and the sea surface temperature(SST) data from NOAA,the spatial and temporal distributions of summer precipitation and their correlations with SST are analyzed.The coupling relationship between the anomalous distribution in summer precipitation and the variation of SST has between studied with the Singular Value Decomposition(SVD) analysis.The increase or decrease of summer precipitation in the Dongting Lake region is closely associated with the SST anomalies in three key regions.The variation of SST in the three key regions has been proved to be a significant previous signal to anomaly of summer rainfall in Dongting region.
文摘Period and space distribution characteristics of high temperature (above 35 ℃) at 7 weather stations in Shenyang City from 1951 to 2008 were analyzed in this study.The results revealed that the occurrence period of high temperature in northern Shenyang was longer than the southern and eastern parts.The northwestern part had the most days of high temperature,the southeastern part came next,and the mid-eastern and southwestern parts had the least.The distribution characteristics of high temperature period were increasing frequency,enhanced intensity and expanded range after 1990s.The occurrence frequency of high temperature was the highest in June and the lowest in August.The hot late summer weather in the middle period of August in 2009 was caused by anomaly atmospheric circulation and subtropical high pressure (stronger and the more westward).
文摘Landsat TM data(June 23,1988,May 6,2007) and Landsat ETM+data(May 10,2000) of Neijiang City,Sichuan Province was taken as the data source,brightness temperature of the study area was obtained by using TM/ETM+thermal infrared wave,and also normalized difference vegetation index(NDVI) was calculated.NDVI of the study area on June 23,1988,May 6,2007,and May 10,2000 was respectively obtained by using Band Math,the least square fitting was adopted to simulate the correlation between surface temperature and vegetation cover.Moreover,linear regression analysis of the correlation between vegetation cover and NDVI was carried out in Excel.The results showed that(a) most of the constructed area has a low NDVI value because there are large areas of hard surface such as buildings and roads,but less vegetation cover;(b) the quarters with better vegetation cover have higher NDVI values;the Tuojiang River has a negative NDVI value;rural areas have better vegetation cover and higher NDVI values.Brightness temperature and vegetation cover has distinct negative correlation,specifically,the higher the vegetation cover is,the lower the surface temperature is,and vice versa.
文摘By selecting the daily maximum temperatures during 1961-2005 in 35 representative stations in Liaoning Province, the temporal and spatial distribution characteristics of extremely maximum temperature event were studied. By using REOF, the mean-square deviation and so on, the variation and distribution situation of extremely maximum temperature in the different regions of Liaoning were reflected. The results showed that the extremely maximum temperature in Liaoning Province could be divided into 3 regions where were respectively the northeast area, the west and the northwest area, the south and the southeast area. The distribution characteristic of extremely maximum temperature threshold value in Liaoning Province was basically consistent with the distribution characteristic of average temperature. The zone where the extremely maximum temperature threshold was relatively high was in the northwest area of Liaoning, and the low threshold zone was in the southeast area and most areas in the east. The variation of extremely maximum temperature in winter was the greatest and in summer was the smallest. The variation of extremely maximum temperature days was the greatest in summer and wasn’t great in spring, autumn, winter.
文摘Based on the mean monthly temperature and precipitation data of East China from 1951 to 2006,we conducted the analysis.The results showed that the mean annual temperature tended to increase in the past 56 years while the variation trend of monthly average temperature was different from the annual one.The obvious increase in temperature happened in early spring and from late autumn to winter.The decrease in temperature happened in summer(August).The precipitation change was not as remarkable as the change in temperature.On the whole,the phase of precipitation change was slightly ahead of temperature change.Continuous wavelet transformation was used to analyze the time-frequency changes of precipitation and temperature in East China and the periodical vibration at different times was obtained.
基金Model of Dynamic Monitoring of Drought Evaluation Method and Business System(CMATG2009MS22)
文摘Based on the observed 2-year temperature data for four kinds of typical urban underlying surfaces,including asphalt, cement, bare land and grass land, the annual variations and influencing factors of landsurface temperature are analyzed. Then fitting equations for surface temperature are established. It is shownthat the annual variation of daily average, maximum and minimum temperature and daily temperature rangeon the four urban underlying surfaces is consistent with the change in air temperature. The difference oftemperature on different underlying surfaces in the summer half year (May to October) is much moreevident than that in the winter half year (December to the following April). The daily average and maximumtemperatures of asphalt, cement, bare land and grass land are higher than air temperature due to theatmospheric heating in the daytime, with that of asphalt being the highest, followed in turn by cement, bareland and grass land. Moreover, the daily average, maximum and minimum temperature on the four urbanunderlying surfaces are strongly impacted by total cloud amount, daily average relative humidity andsunshine hours. The land surface can be cooled (warmed) by increased total cloud amount (relativehumidity). The changes in temperature on bare land and grass land are influenced by both the total cloudamount and the daily average relative humidity. The temperature parameters of the four land surfaces aresignificantly correlated with daily average, maximum and minimum temperature, sunshine hours, dailyaverage relative humidity and total cloud amount, respectively. The analysis also indicates that the range offitting parameter of a linear regression equation between the surface temperature of the four kinds of typicalland surface and the air temperature is from 0.809 to 0.971, passing the F-test with a confidence level of 0.99.
基金This work was supported by the National Natural Science Foundation of China(51774011)Funding Project of Anhui University of Science and Technology(QN2019115)Introduced Research Funding of Anhui University of Science and Technology(13190022).
文摘To study active heat insulation roadway in high temperature mines,the typical high temperature roadway of−965 m in Zhujidong Coal Mine of Anhui,China,is selected as prototype.The ANSYS numerical simulation method is used for sensitivity analysis of heat insulation layer with different thermal conductivity and thickness,as well as surrounding rock with different thermal conductivity and temperature on a heat-adjusting zone radius,surrounding rock temperature field and wall temperature.The results show that the heat-adjusting zone radius will entirely be in the right power index relationship to the ventilation time.Decrease in thermal conductivity and increase in thickness of insulation layer can effectively reduce the disturbance of airflow on the surrounding rock temperature,hence,beneficial for decreasing wall temperature.This favourable trend significantly decreases with ventilation time,increase in thermal conductivity and temperature of surrounding rock,heat-adjusting zone radius,surrounding rock temperature field,and wall temperature.Sensitivity analysis shows that the thermal physical properties of surrounding rock determine the temperature distribution of the roadway,hence,temperature of surrounding rock is considered as the most sensitive factor of all influencing factors.For the spray layer,thermal conductivity is more sensitive,compared to thickness.It is concluded that increase in the spray layer thickness is not as beneficial as using low thermal conductivity insulation material.Therefore,roadway preferential consideration should be given to the rocks with low temperature and thermal conductivity.The application of the insulation layer has positive significance for the thermal environment control in mine roadway,however,increase in the layer thickness without restriction has a limited effect on the thermal insulation.
文摘Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.
文摘[Objective] The research aimed to study the variation characteristics of temperature and precipitation in Benxi area under the background of climate warming.[Method] Based on the monthly mean temperature and precipitation data of four routine meteorological stations in Benxi area from 1953 to 2010,by using linear tendency rate,linear regression equation,wavelet analysis,Mann-Kendall detection and so on,the variation characteristics of temperature and precipitation under the background of climate warming in the area were analyzed.[Result] The annual average temperature during 1953-2010 in Benxi area presented rise trend,and the linear tendency rate was 0.28 ℃/10 a.It was temperature increase trend in four seasons.The temperature rise rate in winter was the maximum and was the minimum in summer.The annual rainfall presented decrease trend,and the linear tendency rate was-18.16 mm/10 a.Except in spring,it was decrease trend in other seasons.Mann-Kendall mutation detection showed that the mutation of annual average temperature in Benxi area in recent 58 years appeared in 1986.There was no mutation phenomenon in summer.Spring mutation appeared in 1974,and autumn mutation appeared in 1987.Winter mutation was in 1981.The annual and seasonal precipitation didn’t have the mutation phenomenon.The wavelet analysis found that the annual average temperature had the periodic variations of 12-14,5-6 and 2 years in Benxi area in recent 58 years.The annual rainfall had the periodic fluctuations of 8-12,5-6 and 2 years.[Conclusion] The research provided the scientific basis for exploration and sustainable development of the climate resources in the mountain area.
文摘[Objective] The research aimed to study the seasonal variation characteristics of precipitation and temperature in China during 1951-1999. [Method] Based on the monthly average precipitation and temperature data in 160 stations from January, 1951 to February, 1999, which were provided by China Meteorological Administration, the spatial-temporal variation characteristics of precipitation and temperature in 48 years were studied by using SEOF method. [Result] SEOF analysis of precipitation:SEOF analysis of the first modal showed the four-season propulsion of rain belt in China from south to north. Seen from the time coefficient, as a whole, the precipitation in China decreased slightly during the 1960s-1970s. After the 1970s, the precipitation had the increase trend and was the decrease trend after the 1980s. SEOF analysis of temperature:the first modals of precipitation and temperature configured well in the space. In the dry zone where the precipitation was less, the temperature variation was obvious. Seen from the time sequence, the temperature in China during 1951-1999 was low, and it was the low temperature period in the 1950s. The temperature rose slightly during the 1950s-1960s, and it entered into the low temperature period again from the middle and latter periods of 1960s to early the 1970s. From the metaphase of 1970s to the end of 1990s, the temperature increased relatively and stably. [Conclusion] The research provided the theory basis for studying the climate variation in China.
基金Project(51274023) supported by the National Natural Science Foundation of ChinaProject(FRF-BD-17-007A) supported by Fundamental Research Funds for the Central Universities,China
文摘In recent years, with the increase of the depth of open-pit mining, the pollution level has been on the rise due to harmful gases and dust occurring in the process of mining. In order to accelerate the diffusion of these air pollutants, the distributed regularity of the rock face temperature which is directly related to the air ventilation in deep open-pit mines should be studied. Here, we establish the key factors influencing the rock face temperature in a deep open-pit mine. We also present an empirical model of the rock face temperature variation in the deep open-pit mine, of which the performance is interestingly high compared with that of the field test. This study lays a foundation to study the ventilation thermodynamic theory in the deep open-pit mine, which is of great importance for theoretical studies and engineering applications of solving air pollution problem in deep open-pit mines.
基金This research work is supported by the National Natural Science Foundation of China under Grant No. 51175119.
文摘During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-puss weld-based rapid prototyping are investigated using three-dimensional finite element models presented. The single-puss weld-bused rapid prototyping experiment is carried out. Thermal cycles calculated agree with experimental measurements. Furthermore, simulated results indicate that there exist the pre-heating effect of the fore layer and the post-heating effect of the rear layer in the multi-layer multi-pass weld-based rapid prototyping. In the first layer, the heat accumulates obviously. After the first layer, the dimension increase of the high temperature region behind the molten pool is not obvious. The heat diffusion condition in the first layer is the best, the heat diffusion condition in the second layer is the worst, and the heat diffusion conditions in the higher layers improve gradually.
基金the financial supports from the National Natural Science Foundation of China (Key Program,Grant No.50634030)the Program for New Century Excellent Talents in University (Grant No.NCET-06-0285)
文摘A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one.
基金supported by the National Natural Science Foundat ion of China(Grant no.41875045)
文摘The wind and temperature fields at 20 to 55 km above the Antigua launch site(17°N,61°W)were analyzed by using sounding rocket data published by the research organization on Stratosphere-Troposphere Processes and their Role in Climate(SPARC).The results showed distinct variations in the wind and temperature fields at different heights from the 1960s to the 1990s.The overall zonal wind speed showed a significant increasing trend with the year,and the overall change in meridional wind speed showed a falling trend from 1976 to 1990,whereas the temperature field showed a significant cooling trend from 1964 to 1990.The times the trends mutated varied at different levels.By taking the altitudes at 20,35,and 50 km as representatives,we found that the zonal wind speed trend had mutated in 1988,1986,and 1986,respectively;that the meridional wind speed trend had mutated in 1990,1986,and 1990,respectively;and that the temperature trend had mutated separately in 1977,1973,and 1967,respectively.Characteristics of the periodic wind and temperature field variations at different heights were also analyzed,and obvious differences were found in time scale variations across the different layers.The zonal and meridional wind fields were basically characterized as having a significant periodic variation of 5 years across the three layers,and each level was characterized as having a periodic variation of less than 5 years.Temperature field variation at the three levels was basically characterized as occurring in 10-year and 5-year cycles.