期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
1
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 Deep learning Military application targets stealth network Mask generation Generative adversarial network
下载PDF
Scattering center modeling for low-detectable targets 被引量:1
2
作者 CHEN Yanxi GUO Kunyi +1 位作者 XIAO Guangliang SHENG Xinqing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期511-521,共11页
The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs wi... The scattering centers(SCs)of low-detectable targets(LDTs)have a low scattering intensity.It is difficult to build the SC model of an LDT using the existing methods because these methods mainly concern dominant SCs with strong scattering contributions.This paper presents an SC modeling approach to acquire the weak SCs of LDTs.We employ the induced currents at the LDT to search SCs,and the joint time-frequency transform together with the Hough transform to separate the scattering contributions of different SCs.Particle swarm optimization(PSO)is applied to improve the estimation results of SCs.The accuracy of the SC model built by this approach is verified by a full-wave numerical method.The validation results show that the SC model of the LDT can precisely simulate the signatures of high-resolution images,such as high-resolution range profile and inverse synthetic aperture radar(ISAR)images. 展开更多
关键词 low-detectable target(LDT) stealth target scattering center(SC)model time-frequency representation full-wave method
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部