期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Artificial Intelligence in Steam Cracking Modeling: A Deep Learning Algorithm for Detailed Effluent Prediction 被引量:11
1
作者 Pieter PPlehiers Steffen HSymoens +3 位作者 Ismaël Amghizar Guy B.Marin Christian V.Stevens Kevin M.Van Geem 《Engineering》 SCIE EI 2019年第6期1027-1040,共14页
Chemical processes can bene t tremendously from fast and accurate ef uent composition prediction for plant design, control, and optimization. The Industry 4.0 revolution claims that by introducing machine learning int... Chemical processes can bene t tremendously from fast and accurate ef uent composition prediction for plant design, control, and optimization. The Industry 4.0 revolution claims that by introducing machine learning into these elds, substantial economic and environmental gains can be achieved. The bottleneck for high-frequency optimization and process control is often the time necessary to perform the required detailed analyses of, for example, feed and product. To resolve these issues, a framework of four deep learning arti cial neural networks (DL ANNs) has been developed for the largest chemicals production process steam cracking. The proposed methodology allows both a detailed characterization of a naphtha feedstock and a detailed composition of the steam cracker ef uent to be determined, based on a limited number of commercial naphtha indices and rapidly accessible process characteristics. The detailed char- acterization of a naphtha is predicted from three points on the boiling curve and paraf ns, iso-paraf ns, ole ns, naphthenes, and aronatics (PIONA) characterization. If unavailable, the boiling points are also estimated. Even with estimated boiling points, the developed DL ANN outperforms several established methods such as maximization of Shannon entropy and traditional ANNs. For feedstock reconstruction, a mean absolute error (MAE) of 0.3 wt% is achieved on the test set, while the MAE of the ef uent predic- tion is 0.1 wt%. When combining all networks using the output of the previous as input to the next the ef uent MAE increases to 0.19 wt%. In addition to the high accuracy of the networks, a major bene t is the negligible computational cost required to obtain the predictions. On a standard Intel i7 processor, predictions are made in the order of milliseconds. Commercial software such as COILSIM1D performs slightly better in terms of accuracy, but the required central processing unit time per reaction is in the order of seconds. This tremendous speed-up and minimal accuracy loss make the presented framework highly suitable for the continuous monitoring of dif cult-to-access process parameters and for the envi- sioned, high-frequency real-time optimization (RTO) strategy or process control. Nevertheless, the lack of a fundamental basis implies that fundamental understanding is almost completely lost, which is not always well-accepted by the engineering community. In addition, the performance of the developed net- works drops signi cantly for naphthas that are highly dissimilar to those in the training set. 展开更多
关键词 Artificial intelligence Deep learning steam cracking Artificial neural networks
下载PDF
Modeling and Optimization of Ethane Steam Cracking Process in An Industrial Tubular Reactor with Improved Reaction Scheme 被引量:3
2
作者 Mohsin Ali Liao Zuwei +4 位作者 Yao Yang Sun Jingyuan Jiang Binbo Wang Jingdai Yang Yongrong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期117-125,共9页
Ethane steam cracking process in an industrial reactor was investigated.An one-demsional(1D)steady-state model was developed firstly by using an improved molecular reaction scheme and was then simulated in Aspen Plus.... Ethane steam cracking process in an industrial reactor was investigated.An one-demsional(1D)steady-state model was developed firstly by using an improved molecular reaction scheme and was then simulated in Aspen Plus.A comparison of model results with industrial data and previously reported results showed that the model can predict the process kinetics more accurately.In addition,the validated model was used to study the effects of different process variables,including coil outlet temperature(COT),steam-to-ethane ratio and residence time on ethane conversion,ethylene selectivity,products yields,and coking rate.Finally,steady-state optimization was conducted to the operation of industrial reactor.The COT and steam-to-ethane ratio were taken as decision variables to maximize the annual operational profit. 展开更多
关键词 ethane steam cracking tubular reactor Aspen Plus molecular reaction scheme process simulation process optimization
下载PDF
Estimating the Operation Status of Steam Cracking Furnace Using Numerical Simulation with Combustion Models 被引量:3
3
作者 Zhou Xianfeng Yang Yuanyi +2 位作者 Wang Guoqing Zhang Lijun Liu Yi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期52-63,共12页
An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has u... An accurate and complete geometric model was constructed to simulate the combustion, flow and temperature environment in the radiant section of the steam cracking furnace. Simulation of flow and radiation status has utilized the standard k-ε model and P1 model. The finite-rate/eddy-dissipation (finite-rate/ED) combustion model and non-premixed combustion model were both used to simulate accurately the combustion and the operation status of the steam cracking furnace. Three different surfaces of the steam cracking furnace were obtained from the simulation, namely:the flue gas temperature field of the entrance surface in long flame burners, the central surface location of tubes, and the crossover section surface. Detailed information on the flue gas temperature and the mass concentration fraction of these different surfaces in the steam cracking furnace can also be obtained by the simulation. This paper analyzed and compared the simulation results with the two combustion models, estimated the operation status of the steam cracking furnace, and reported that the finite-rate/ED model is appropriate to simulate the steam cracking furnace by comparing key simulation data with actual test data. This work has also provided a theoretical basis for simulating and operating the steam cracking furnace. 展开更多
关键词 steam cracking furnace operation status combustion model numerical simulation flue gas
下载PDF
Analysis of Current Status of Steam Cracking Feed Production and Measures for Maximization of Steam Cracking Feed 被引量:3
4
作者 Chen Su 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2005年第2期41-46,共6页
In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylen... In recent years China has seen speedy development of its ethylene industry. Compared to other advanced countries the per capita ethylene consumption in China is still low. With successive startup of grassroots ethylene projects in China after 2006 and debottlenecking and expansion of existing ethylene units China will be confronted with the major issues related with increase of feedstocks for steam cracking. Naphtha is the main feedstock for producing ethylene, and the hydrocracked tail oil is increasing its share in the steam cracker feedstock pool over recent years. This article has analyzed the possibility for maximization of steam cracking feedstock and estimated steam cracker feedstock output based on processing 5 Mt/a of different crudes including the mixed crude transferred through Lu-Ning pipeline and Arabian light crude using corresponding process technologies at the refinery. 展开更多
关键词 steam cracking feed maximization of production measures
下载PDF
Data-driven intelligent modeling framework for the steam cracking process 被引量:1
5
作者 Qiming Zhao Kexin Bi Tong Qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期237-247,共11页
Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and prof... Steam cracking is the dominant technology for producing light olefins,which are believed to be the foundation of the chemical industry.Predictive models of the cracking process can boost production efficiency and profit margin.Rapid advancements in machine learning research have recently enabled data-driven solutions to usher in a new era of process modeling.Meanwhile,its practical application to steam cracking is still hindered by the trade-off between prediction accuracy and computational speed.This research presents a framework for data-driven intelligent modeling of the steam cracking process.Industrial data preparation and feature engineering techniques provide computational-ready datasets for the framework,and feedstock similarities are exploited using k-means clustering.We propose LArge-Residuals-Deletion Multivariate Adaptive Regression Spline(LARD-MARS),a modeling approach that explicitly generates output formulas and eliminates potentially outlying instances.The framework is validated further by the presentation of clustering results,the explanation of variable importance,and the testing and comparison of model performance. 展开更多
关键词 Mathematical modeling Data-driven modeling Process systems steam cracking CLUSTERING Multivariate adaptive regression spline
下载PDF
Study on Expansion of Steam Cracking Unit to 660 kt/a at Yanshan Petrochemical Company
6
作者 Cao Xianghong(SINOPEC Corp., Beijing 100011) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2003年第3期9-22,共14页
Yanshan Petrochemical Company after having expanded its 300 kt/a steam cracking unit to 450 kt/a in 1994 is still experiencing such problems as low feedstock flexibility, high energy consumption and smaller scale of e... Yanshan Petrochemical Company after having expanded its 300 kt/a steam cracking unit to 450 kt/a in 1994 is still experiencing such problems as low feedstock flexibility, high energy consumption and smaller scale of ethylene unit.In order to fully improve technical capability of steam crackers, reduce energy consumption, improve feedstock flexibility and increase production capacity, a lot of technical revamp cases on steam cracking were studied and compared.Revamp of relevant facilities has expanded the ethylene capacity to the target of 660 kt/a with the actual capacity reaching 710 kt/a. This revamp project has remarkably reduced the energy consumption, which is capable of using naphtha, light diesel fuel, heavy diesel fuel and the hydrocracked tail oil as the steam cracking feedstock. This project is the first to apply refrigeration by means of a mixed cooling agent and has succeeded in using C, catalytic rectification/hydrogenation technology, which has given an impetus to the progress of steam cracking industry in the world. 展开更多
关键词 steam cracking ETHYLENE UNIT EXPANSION
下载PDF
Outlet Temperature Correlation and Prediction of Transfer Line Exchanger in an Industrial Steam Ethylene Cracking Process 被引量:3
7
作者 金阳坤 李进龙 +2 位作者 杜文莉 王振雷 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第4期388-394,共7页
Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined b... Predicting the best shutdown time of a steam ethylene cracking furnace in industrial practice remains a challenge due to the complex coking process. As well known, the shutdown time of a furnace is mainly determined by coking condition of the transfer line exchangers (TLE) when naphtha or other heavy hydrocarbon feedstocks are cracked. In practice, it is difficult to measure the coke thickness in TLE through experimental method in the complex industrial situation. However, the outlet temperature of TLE (TLEOT) can indirectly characterize the coking situation in TLE since the coke accumulation in TLE has great influence on TLEOT. Thus, the TLEOT could be a critical factor in deciding when to shut down the furnace to decoke. To predict the TLEOT, a paramewic model was proposed in this work, based on theoretical analysis, mathematic reduction, and parameters estimation. The feasibility of the proposed model was further checked through industrial data and good agreements between model prediction and industrial data with maximum deviation 2% were observed. 展开更多
关键词 transfer line exchanger outlet temperature parametric model steam ethylene cracking
下载PDF
Targeted Catalytic Cracking to Olefins(TCO):Reaction Mechanism,Production Scheme,and Process Perspectives 被引量:2
8
作者 Youhao Xu Yanfen Zuo +3 位作者 Wenjie Yang Xingtian Shu Wei Chen Anmin Zheng 《Engineering》 SCIE EI CAS CSCD 2023年第11期100-109,共10页
Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their... Light olefins are important organic building blocks in the chemicals industry.The main low-carbon olefin production methods,such as catalytic cracking and steam cracking,have considerable room for improvement in their utilization of hydrocarbons.This review provides a thorough overview of recent studies on catalytic cracking,steam cracking,and the conversion of crude oil processes.To maximize the production of light olefins and reduce carbon emissions,the perceived benefits of various technologies are examined.Taking olefin generation and conversion as a link to expand upstream and downstream processes,a targeted catalytic cracking to olefins(TCO)process is proposed to meet current demands for the transformation of oil refining into chemical production.The main innovations of this process include a multiple feedstock supply,the development of medium-sized catalysts,and a diameter-transformed fluidizedbed reactor with different feeding schemes.In combination with other chemical processes,TCO is expected to play a critical role in enabling petroleum refining and chemical processes to achieve low carbon dioxide emissions. 展开更多
关键词 Light olefins steam cracking Catalytic cracking TCO process Oil processing revolution
下载PDF
Intrinsic Kinetic Modeling of Thermal Dimerization of C5 Fraction 被引量:4
9
作者 Guo Liang Wang Tiefeng +1 位作者 Li Dongfeng Wang Jinfu 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第1期92-99,共8页
This work aims to investigate the intrinsic kinetics of thermal dimerization of C_5 fraction in the reactive distillation process. Experiments are conducted in an 1000-m L stainless steel autoclave under some selected... This work aims to investigate the intrinsic kinetics of thermal dimerization of C_5 fraction in the reactive distillation process. Experiments are conducted in an 1000-m L stainless steel autoclave under some selected design conditions. By means of the weighted least squares method, the intrinsic kinetics of thermal dimerization of C_5 fraction is established, and the corresponding pre-exponential factor as well as the activation energy are determined. For example, the pre-exponential factor A is equal to 4.39×105 and the activation energy E4 a is equal to 6.58×10J/mol for the cyclopentadiene dimerization reaction. The comparison between the experimental and calculated results shows that the kinetics model derived in this work is accurate and reliable, which can be used in the design of reactive distillation columns. 展开更多
关键词 steam cracking C5 fraction thermal dimerization intrinsic kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部