Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM ...Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM by examining gene expression patterns and biological pathways in both mouse and human RM models.Meanwhile,explore relevant traditional Chinese medicine(TCM)components targeting potential therapeutic targets.Methods:We utilized the GSE211251 mouse and the GSE26787 human datasets,employing gene set enrichment analysis and gene metaphysics analysis to examine differentially expressed genes and enriched pathways.Single-cell RNA analysis uncovered cellular heterogeneity and arranged pharmacology-mapped potential drug-target intelligence.We employed molecular docking strategies to assess the affinity of TCM components for key proteins.Results:In the mouse model,genes such as Ly6f1 and Gpr26 were upregulated,while Stc5a and Galca exhibited downregulation.Gene set enrichment analysis identified key pathways,including the tumor necrosis factor-mediated signaling pathway.In human samples,Gene Ontology analysis highlighted processes such as apoptosis and cell adhesion.Single-cell RNA analysis revealed distinct cellular populations between normal and RM samples.Systems pharmacology identified C-X-C motif chemokine receptor 4(CXCR4)and endothelin 1(EDN1)as potential key targets,and molecular docking confirmed that stearic acid from TCM appears to regulate these proteins.Conclusion:This study presents a comprehensive analysis of the genetic and cellular underpinnings of RM,identifying CXCR4 and EDN1 as promising therapeutic targets.Stearic acid from TCM could provide targeted treatment by modulating these key proteins,paving the way for new RM treatment strategies.展开更多
Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatme...Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.展开更多
The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release con...The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.展开更多
A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in st...A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution. The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth. The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods. The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium. The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.展开更多
Magnesium and its alloys are ideal candidates for bioabsorbable implants.However,they can dissolve too rapidly in the human body for most applications.In this research,high purified magnesium(HP-Mg)was coated with ste...Magnesium and its alloys are ideal candidates for bioabsorbable implants.However,they can dissolve too rapidly in the human body for most applications.In this research,high purified magnesium(HP-Mg)was coated with stearic acid(SA)to slow the corrosion rate of magnesium in simulated body fluid at 37±1°C.HP-Mg was anodized(AC and DC voltages)to form an oxide/hydroxide layer,and then it was immersed in a SA solution.The SA coated layer surface,anodized layer,and the thickness of the oxide/hydroxide layer were investigated with Scanning Electron Microscopy(SEM).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization(PDP)were used to estimate the corrosion rate of HP-Mg specimens.The results confirm that the hydrophobic coating can decrease the corrosion rate of HP-Mg by more than 1000x.The protectiveness of coated layer for anodized specimens with AC voltage continue for 2 and 3 weeks.For the HP-Mg coated anodized with DC voltage,the coated layer could improve the corrosion resistance for only a few days.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diamete...The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm) is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).展开更多
The surface properties of superfine alumina trihydrate (ATH) after surface modification were studied by measuring the contact angle, active ratio, oil adsorption, total organic carbon, adsorption ratio, and Fourier ...The surface properties of superfine alumina trihydrate (ATH) after surface modification were studied by measuring the contact angle, active ratio, oil adsorption, total organic carbon, adsorption ratio, and Fourier transform infrared (FTIR) spectrum. The contact angle increased initially and then slowly decreased with an increase of the amount of stearic acid. However, the surface flee energy decreased ini- tially and then increased. Surface modification with stearic acid or sodium stearate can benefit from elevating temperature. The base surface tension component and the free energy of Lewis acid-base both declined sharply following the surface modification. Excess stearic acid was physically adsorbed in the form of multilayer adsorption, and an interaction between oxygen on the ATH surface and hydroxyl in stearic acid was subsequently determined. Our results further indicated that the contact angle and adsorption ratio can be used as control indicators for surface modification compared with active ratio, oil adsorption and total organic carbon.展开更多
K4Ce2Nb10O30 ultrafine powders were prepared by stearic acid method (SAM). The obtained products were analyzed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning ele...K4Ce2Nb10O30 ultrafine powders were prepared by stearic acid method (SAM). The obtained products were analyzed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy and UV-visible absorption spectra. XRD patterns revealed that K4Ce2Nb10O30 powders treated at 900 oC for 2 h presented tetragonal structure without the presence of deleterious phases. Furthermore, the K4Ce2Nb10O30 prepared by SAM had considerable activity under visible light irradiation.展开更多
Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffractio...Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffraction, nitrogen adsorption-desorption isotherm study, transmission electron microscopy (TEM), thermal gravimetric and differential thermal analysis, and Fourier transform infrared (FTIR) analysis . The as-synthesized samples prepared at pH 4.5 showed lamellar mesostruroned form with high crystallinity. Results showed that the pore size and pore volume changed when the materials were prepared under different pH conditions. Morphology of the samples was observed by using TEM, which showed that the samples possessed relatively small particles closely packed together. The as-synthesized samples were investigated using FTIR, and the mesopore formation mechanism was discussed.展开更多
The hydration reaction of a mixture of tricalcium aluminate (C3A) and gypsum with the molar ratio of 1:3 was carried out at room temperature and a water/solid ratio of 4.0. The hydration was carried out in presence of...The hydration reaction of a mixture of tricalcium aluminate (C3A) and gypsum with the molar ratio of 1:3 was carried out at room temperature and a water/solid ratio of 4.0. The hydration was carried out in presence of 0, 1 and 3% stearic acid and the mixes were designated as A, B and C, respectively. Ettringite was the only hydration product formed in the presence and absence of stearic acid. Phase composition, microstructure, infra-red analysis as well as degree of hydration were carried out for the different hydration mixtures. The rate of ettringite formation in the presence of 3% stearic acid was accelerated during the first half hour of hydration, and then retardation was occurred. In the presence of 1% stearic acid the ettringite formation was accelerated first till 3 days, then retardation was observed at later hydration ages.展开更多
In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface...In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.展开更多
PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis....PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.展开更多
Nb-based powder was fabricated via mechanical grinding. The influence of stearic acid on the grinding process was studied. The slructural evolution and morphological evolution of the milled powder were characterized b...Nb-based powder was fabricated via mechanical grinding. The influence of stearic acid on the grinding process was studied. The slructural evolution and morphological evolution of the milled powder were characterized by X-ray diffraction (XRD), scanning electron mi- croscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. It is indicated that an appropriate amount of stearic acid accelerates the particle refinement process and favors the production of superfine Nb-based particles with good dispersivity and high activity. However, an inappropriate amount of stearic acid has an adverse effect on the refinement process.展开更多
The stearic acid nanoparticles loaded polyoxometalate K6[?-(CpTi)2SiW10O38] [(CpTi)2SiW10] have been prepared and structurally characterized by elemental analysis, IR spectra. The particle size was estimated by transi...The stearic acid nanoparticles loaded polyoxometalate K6[?-(CpTi)2SiW10O38] [(CpTi)2SiW10] have been prepared and structurally characterized by elemental analysis, IR spectra. The particle size was estimated by transition electron microscope and zatesizer instrument. The result showed that the polyoxometalate retained the parent structure after encapsulation by stearic acid nanoparticles.展开更多
Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1...Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1 electrodes. The relation of conductivities of LB films with molar ratio of SA was studied. The conductivities of LB films of TBT-TTF-Ni(dmit)_2/SA were measured under undoped and I_2 doped states. The maximum conductivity () of LB film was 40s/cm.展开更多
The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment...The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment and the inhibition is mainly based on the blocking effect.展开更多
Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of steari...Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of stearic acid on fibrous brucite and the induced changes in surface properties were studied by using X-ray diffraction(XRD),scanning electron microscopy(SEM),infrared spectroscopy(IR),Raman spectroscopy and thermo-gravimetric analysis(TGA).XRD analysis indicates that the modification of fibrous brucite with stearic acid does not cause any changes in the structure of fibrous brucite mineral.Spectroscopy and thermal analysis show that the surfactant molecules are not only directly adsorbed on the surface of the mineral,but also chemisorbed on mineral surface by forming chemical bonds between the modifier and magnesium hydroxide.展开更多
The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insi...The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insights to the relationship of the morphology and spatial distribution of stearic acid(SA) with the lubrication efficiency, as well as the resulting tablet property. Unmodified SA particles as flat sheet-like particles were firstly reprocessed by emulsification in hot water to obtain the reprocessed SA particles with spherical morphology. The three-dimensional(3 D) information of SA particles in tablets was detected by a quantitative and non-invasive 3 D structure elucidation technique, namely, synchrotron radiation X-ray micro-computed tomography(SR-μCT). SA particles in glipizide tablets prepared by using unmodified SA(GUT), reprocessed SA(GRT), as well as reference listed drug(RLD) of glipizide tablets were analyzed by SR-μCT. The results showed that the reprocessed SA with better flowability contributed to similarity of breaking forces between that of GRT and RLD. SA particles in GRT were very similar to those in RLD with uniform morphology and particle size, while SA particles in GUT were not evenly distributed. These findings not only demonstrated the feasibility of SR-μCT as a new method in revealing the morphology and spatial distribution of excipient in drug delivery system, but also deepened insights of solid dosage form design into a new scale by powder engineering.展开更多
基金support from the Ningxia Hui Autonomous Region Key Research and Development Program(Project No.2021BEG03041).
文摘Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM by examining gene expression patterns and biological pathways in both mouse and human RM models.Meanwhile,explore relevant traditional Chinese medicine(TCM)components targeting potential therapeutic targets.Methods:We utilized the GSE211251 mouse and the GSE26787 human datasets,employing gene set enrichment analysis and gene metaphysics analysis to examine differentially expressed genes and enriched pathways.Single-cell RNA analysis uncovered cellular heterogeneity and arranged pharmacology-mapped potential drug-target intelligence.We employed molecular docking strategies to assess the affinity of TCM components for key proteins.Results:In the mouse model,genes such as Ly6f1 and Gpr26 were upregulated,while Stc5a and Galca exhibited downregulation.Gene set enrichment analysis identified key pathways,including the tumor necrosis factor-mediated signaling pathway.In human samples,Gene Ontology analysis highlighted processes such as apoptosis and cell adhesion.Single-cell RNA analysis revealed distinct cellular populations between normal and RM samples.Systems pharmacology identified C-X-C motif chemokine receptor 4(CXCR4)and endothelin 1(EDN1)as potential key targets,and molecular docking confirmed that stearic acid from TCM appears to regulate these proteins.Conclusion:This study presents a comprehensive analysis of the genetic and cellular underpinnings of RM,identifying CXCR4 and EDN1 as promising therapeutic targets.Stearic acid from TCM could provide targeted treatment by modulating these key proteins,paving the way for new RM treatment strategies.
基金financially supported by the National Natural Science Foundation of China (No.52274252)the Special Fund for the Construction of Innovative Provinces in Hunan Province,China (Nos.2020RC3038 and 2022WK4004)the Changsha City Fund for Distinguished and Innovative Young Scholars,China (No.kq1802007)。
文摘Sepiolite(ST) was used as a supporting matrix in compiste phase change materials(PCMs) due to its unique microstructure, good thermal stability, and other raw material advantages. In this paper, microwave acid treatment were innovatively used for the modification of sepiolite. The modified sepiolite(ST_(m)) obtained in different hydrochloric acid concentrations(0.25, 0.5, 0.75, and 1.0 mol·L^(-1)) was added to stearic acid(SA) via vacuum impregnation method. The thermophysical properties of the composites were changed by varying the hydrochloric acid concentration. The SA-ST_(m0.5)obtained by microwave acid treatment at 0.5 mol·L^(-1)hydrochloric acid concentration showed a higher loading capacity(82.63%) than other composites according to the differential scanning calorimeter(DSC) analysis. The melting and freezing enthalpies of SA-ST_(m0.5)were of 152.30 and 148.90 J·g^(-1), respectively. The thermal conductivity of SA-ST_(m0.5)was as high as 1.52 times that of pure SA. In addition, the crystal structure, surface morphology, and microporous structure of ST_(m)were studied, and the mechanism of SAST_(m0.5)performance enhancement was further revealed by Brunauere Emmett Teller(BET) analysis. Leakage experiment showed that SAST_(m0.5)had a good morphological stability. These results demostrate that SA-ST_(m0.5)has a potential application in thermal energy storage.
基金supported by the Guangdong Provincial Science and Technology Project(No.2015B020215012)State Key Laboratory of Woody Oil Resource Utilization,Co-Built by Provincial and Ministry of China(No.GZKF202108)National Natural Science Foundation of China(32101475).
文摘The low utilization rate of pesticides makes the migration of pesticides in water and soil,which brings great harm to the ecosystem.The development of pesticide carriers with good drug loading capacity and release control abil-ity is an effective method to realize effective utilization of pesticides and reduce pesticide losses.In this work,fosthiazate-stearic acid/expanded perlite sustained-release particles were successfully prepared by vacuum impregnation using expanded perlite(EP)as carrier,fosthiazate(FOS)as model pesticide and stearic acid(SA)as hydrophobic matrix.The structure and morphology of the samples were studied by BET,FT-IR,TGA,XRD,DSC and SEM.The effects of different mass ratios of FOS to SA on loading capacity and release rate at 24 h were investigated.The sustained release behavior of FOS-SA/EP at different temperatures and pH values was investigated by static dialysis bag method.The results showed that FOS and SA were adsorbed in EP pores by physical interaction.With the mass ratios of FOS to SA decreasing from 7:3 to 3:7,the 24 h release rate of FOS-SA/EP decreased from 18.77%to 8.05%,and the drug loading decreased from 461.32 to 130.99 mg/g.FOS-SA/EP showed obvious temperature response at 25℃,30℃ and 35℃,the cumulative release rate(CRR)of 200 h were 33.38%,41.50%and 51.17%,respectively.When pH=5,the CRR of FOS was higher than that of pH=7,and the CRR of FOS for 200 h were 49.01%and 30.12%,respectively.At different temperatures and pH=5,the release mechanism of FOS-SA/EP belongs to the Fickian diffusion mechanism;When pH=7,the diffusion mechanism is dominant,and the dissolution mechanism is complementary.
基金financially supported by the National Science Foundation through ERC-RMB at NCAT
文摘A green chemical conversion coating for magnesium was obtained with a phytic acid solution. The microstructure and corrosion properties of phytic acid conversion coated magnesium were further improved by soaking in stearic acid solution. The phytic acid conversion coated magnesium after soaking in the stearic acid showed no micro-cracks and the surface became very smooth. The corrosion behavior of the uncoated and coated magnesium samples was studied by electrochemical methods. The corrosion resistance of the stearic acid treated sample was much higher than that of phytic acid conversion coated magnesium or uncoated magnesium. The electrochemical results indicated that the stearic acid treated coating provided effective corrosion protection to the magnesium sample.
文摘Magnesium and its alloys are ideal candidates for bioabsorbable implants.However,they can dissolve too rapidly in the human body for most applications.In this research,high purified magnesium(HP-Mg)was coated with stearic acid(SA)to slow the corrosion rate of magnesium in simulated body fluid at 37±1°C.HP-Mg was anodized(AC and DC voltages)to form an oxide/hydroxide layer,and then it was immersed in a SA solution.The SA coated layer surface,anodized layer,and the thickness of the oxide/hydroxide layer were investigated with Scanning Electron Microscopy(SEM).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization(PDP)were used to estimate the corrosion rate of HP-Mg specimens.The results confirm that the hydrophobic coating can decrease the corrosion rate of HP-Mg by more than 1000x.The protectiveness of coated layer for anodized specimens with AC voltage continue for 2 and 3 weeks.For the HP-Mg coated anodized with DC voltage,the coated layer could improve the corrosion resistance for only a few days.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
基金the National 11th Five-Year Technology Support Project(No.2007BAE52B00)Natural Science Foundation of Shanxi(No.2008021017)China Research Institute of Daily Chemical Industry for fund support
文摘The synthesis of stearic acid triethanolamine ester over solid acid catalysts was investigated.The results showed that the catalytic activity and selectivity of zirconium sulfate supported on SBA-15(6)(pore diameter 6 nm) is better than that of commonly used hypophosphorous acid,zirconium sulfate supported on MCM-41 and zirconium sulfate supported on SBA-15(9)(pore diameter 9 nm).
基金financially supported by the National Natural Science Foundation of China (No. 51274242)
文摘The surface properties of superfine alumina trihydrate (ATH) after surface modification were studied by measuring the contact angle, active ratio, oil adsorption, total organic carbon, adsorption ratio, and Fourier transform infrared (FTIR) spectrum. The contact angle increased initially and then slowly decreased with an increase of the amount of stearic acid. However, the surface flee energy decreased ini- tially and then increased. Surface modification with stearic acid or sodium stearate can benefit from elevating temperature. The base surface tension component and the free energy of Lewis acid-base both declined sharply following the surface modification. Excess stearic acid was physically adsorbed in the form of multilayer adsorption, and an interaction between oxygen on the ATH surface and hydroxyl in stearic acid was subsequently determined. Our results further indicated that the contact angle and adsorption ratio can be used as control indicators for surface modification compared with active ratio, oil adsorption and total organic carbon.
基金Project supported by the National Natural Science Foundation of China (20872051) "Zijin Star" of NJUST
文摘K4Ce2Nb10O30 ultrafine powders were prepared by stearic acid method (SAM). The obtained products were analyzed by X-ray diffraction, transmission electron microscopy, energy dispersive X-ray spectrometry, scanning electron microscopy and UV-visible absorption spectra. XRD patterns revealed that K4Ce2Nb10O30 powders treated at 900 oC for 2 h presented tetragonal structure without the presence of deleterious phases. Furthermore, the K4Ce2Nb10O30 prepared by SAM had considerable activity under visible light irradiation.
基金Project supported by the Japanese Government Ministry of Education, Culture, Sports, Science and Technology (Monbuka-gakusho Scholarship)
文摘Lanthanum phosphate was prepared in the presence of citric acid and stearic acid under methanolic conditions at pH 4.5 and pH 7, respectively. The samples obtained were intensively characterized using X-ray diffraction, nitrogen adsorption-desorption isotherm study, transmission electron microscopy (TEM), thermal gravimetric and differential thermal analysis, and Fourier transform infrared (FTIR) analysis . The as-synthesized samples prepared at pH 4.5 showed lamellar mesostruroned form with high crystallinity. Results showed that the pore size and pore volume changed when the materials were prepared under different pH conditions. Morphology of the samples was observed by using TEM, which showed that the samples possessed relatively small particles closely packed together. The as-synthesized samples were investigated using FTIR, and the mesopore formation mechanism was discussed.
文摘The hydration reaction of a mixture of tricalcium aluminate (C3A) and gypsum with the molar ratio of 1:3 was carried out at room temperature and a water/solid ratio of 4.0. The hydration was carried out in presence of 0, 1 and 3% stearic acid and the mixes were designated as A, B and C, respectively. Ettringite was the only hydration product formed in the presence and absence of stearic acid. Phase composition, microstructure, infra-red analysis as well as degree of hydration were carried out for the different hydration mixtures. The rate of ettringite formation in the presence of 3% stearic acid was accelerated during the first half hour of hydration, and then retardation was occurred. In the presence of 1% stearic acid the ettringite formation was accelerated first till 3 days, then retardation was observed at later hydration ages.
基金Funded by the Major State Research Development Program of China during the 13th Five-Year Plan Period(No.2016YFC0700904)the Science and Technology Support Program of Hubei Province(Nos.2014BAA134 and 2015BAA107)
文摘In order to improve the thermal storage capacity of expanded vermiculite(EV) based formstable composite PCM(FS-PCM) via organic modification of EV, first, EV was modified with a sodium stearate(Na St) as surface modifier, and organic EV(OEV) with hydrophobicity and higher adsorption capacity for fatty acid was obtained. A novel capric-stearic acid eutectic(CA-SA)/OEV FS-PCM with high thermal storage capacity was then developed. OEV and CA-SA/OEV were characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry(DSC), thermal gravimetry(TG), and thermal cycling test. Results showed that OEV has obvious hydrophobicity and a higher adsorption capacity for fatty acid. Its adsorption ratio has increased by 48.71% compared with that of EV. CA-SA/OEV possesses high thermal storage density(112.52 J/g), suitable melting temperature(20.49 ℃), good chemical compatibility, excellent thermal stability and reliability, indicating great application potential for building energy efficiency. Moreover, organic modification of inorganic matrix may offer novel options for improving its adsorption capacity for organic PCMs and increasing heat storage capacity of corresponding FS-PCMs.
基金This work was financially supported by the Ministry of Science and Technology of China through 973-project (No. 2002CB613301).
文摘PZT nanocrystalline powder was prepared by a stearic acid gel method. Thecrystallization process from the precursor was monitored by infrared spectroscopy, differentialthermal analysis, and thermogravimetric analysis. The nano-sized PZT powder was characterized byX-ray diffraction and transmission electron microscopy. It shows that pure single-phase PZT powdercould be obtained at 450 deg C for 1 h, and the particle size is about 20 nm. With an increase inthe calcination temperature, the PZT crystallite size increased.
基金the National Basic Research Program of China(No.2011CB606306)the National High Technology Research and Development Program of China(No.2009AA033201)+3 种基金the National Natural Science Foundation of China(No.50974017)the Fundamental Research Funds for the Central Universities(No.FRF-TP-11-004A)the Program for New Century Excellent Talentsin Universities of China(No.NCET-10-0226)Fok Ying Tung Education Foundation for Young College Teachers(No.122016)
文摘Nb-based powder was fabricated via mechanical grinding. The influence of stearic acid on the grinding process was studied. The slructural evolution and morphological evolution of the milled powder were characterized by X-ray diffraction (XRD), scanning electron mi- croscopy (SEM), and energy dispersive spectroscopy (EDS) analysis. It is indicated that an appropriate amount of stearic acid accelerates the particle refinement process and favors the production of superfine Nb-based particles with good dispersivity and high activity. However, an inappropriate amount of stearic acid has an adverse effect on the refinement process.
文摘The stearic acid nanoparticles loaded polyoxometalate K6[?-(CpTi)2SiW10O38] [(CpTi)2SiW10] have been prepared and structurally characterized by elemental analysis, IR spectra. The particle size was estimated by transition electron microscope and zatesizer instrument. The result showed that the polyoxometalate retained the parent structure after encapsulation by stearic acid nanoparticles.
文摘Conductivities of Langmuir-Blodgett(LB) films of tetrabenzylthio- tetra-thiafulvalence-Ni(dmit)_2/stearic acid (SA)were described. This charge transfer complex was transferred with SA onto a glass plate coated with A1 electrodes. The relation of conductivities of LB films with molar ratio of SA was studied. The conductivities of LB films of TBT-TTF-Ni(dmit)_2/SA were measured under undoped and I_2 doped states. The maximum conductivity () of LB film was 40s/cm.
基金The project is supported by National Natural Science Foundation of China Corrosion Science Laboratory, Chinese Academy of Sciences.
文摘The Langmuir-Blodgett (LB) technique was used for the first time to study inhibition mechanism. Stearic acid Langmuir-Blodgett (SALB) monolayers showed a good inhibition effect on iron corrosion in neutral environment and the inhibition is mainly based on the blocking effect.
基金Funded by National Natural Science Foundation of China(No.51274015)
文摘Fibrous brucite,a kind of brucite with unique structure and physical properties,was modified with stearic acid as a surface modifier.In order to investigate the mechanism of surface modification,the fixation of stearic acid on fibrous brucite and the induced changes in surface properties were studied by using X-ray diffraction(XRD),scanning electron microscopy(SEM),infrared spectroscopy(IR),Raman spectroscopy and thermo-gravimetric analysis(TGA).XRD analysis indicates that the modification of fibrous brucite with stearic acid does not cause any changes in the structure of fibrous brucite mineral.Spectroscopy and thermal analysis show that the surfactant molecules are not only directly adsorbed on the surface of the mineral,but also chemisorbed on mineral surface by forming chemical bonds between the modifier and magnesium hydroxide.
基金The authors are grateful for the financial support from the National Science and Technology Major Project(2017ZX09101001-006)Thanks to the BL13W1 beamline of the SSRF for the precious beam time and help from the team.
文摘The shapes of particles and their distribution in tablets, controlled by pretreatment and tableting process, determine the pharmaceutical performance of excipient like lubricant. This study aims to provide deeper insights to the relationship of the morphology and spatial distribution of stearic acid(SA) with the lubrication efficiency, as well as the resulting tablet property. Unmodified SA particles as flat sheet-like particles were firstly reprocessed by emulsification in hot water to obtain the reprocessed SA particles with spherical morphology. The three-dimensional(3 D) information of SA particles in tablets was detected by a quantitative and non-invasive 3 D structure elucidation technique, namely, synchrotron radiation X-ray micro-computed tomography(SR-μCT). SA particles in glipizide tablets prepared by using unmodified SA(GUT), reprocessed SA(GRT), as well as reference listed drug(RLD) of glipizide tablets were analyzed by SR-μCT. The results showed that the reprocessed SA with better flowability contributed to similarity of breaking forces between that of GRT and RLD. SA particles in GRT were very similar to those in RLD with uniform morphology and particle size, while SA particles in GUT were not evenly distributed. These findings not only demonstrated the feasibility of SR-μCT as a new method in revealing the morphology and spatial distribution of excipient in drug delivery system, but also deepened insights of solid dosage form design into a new scale by powder engineering.