Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified th...Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).展开更多
On the basis of the practical production of non-oriented silicon steel, the formation of Mg O·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace(BOF) → RH → compact strip production(CSP)...On the basis of the practical production of non-oriented silicon steel, the formation of Mg O·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace(BOF) → RH → compact strip production(CSP)". The thermodynamic and kinetic conditions of the formation of Mg O·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics(CFD) software. The results showed that the Mg O/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that Mg O·Al2O3 inclusions were not observed before the RH refining process. In contrast, the Mg O/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of Mg O·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s^-1 at an argon flow rate of 698 L·min^-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%–0.00028wt% and [Al]s was 0.31wt%–0.37wt%; these concentrations were theoretically calculated to fall within the Mg O·Al2O3formation zone, thereby leading to the formation of Mg O·Al2O3 inclusions in the steel. Thus, the formation of Mg O·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the Mg O content in the ladle refractory.展开更多
Electroslag remelting (ESR) process using consumable electrode deoxidized with Ca-Si and Fe-Si instead of Al, and acid slag (CaF_2SiO_2Al_2O_3CaO) instead of universal slag ANF_6(CaF_2. 70 %+A1_2O_3.30 %) could change...Electroslag remelting (ESR) process using consumable electrode deoxidized with Ca-Si and Fe-Si instead of Al, and acid slag (CaF_2SiO_2Al_2O_3CaO) instead of universal slag ANF_6(CaF_2. 70 %+A1_2O_3.30 %) could change brittle inclusion (alumina) to ductile inclusion (silicate) in remelted steel. Fatigue life of bearing steel could be increased significantly in this way.展开更多
The present work deals with thermodynamic modeling of oxide systems, in the context of slags and inclusions in steelmaking. The work has emphasis on oxides encountered during the production of tire – cord steel. Cont...The present work deals with thermodynamic modeling of oxide systems, in the context of slags and inclusions in steelmaking. The work has emphasis on oxides encountered during the production of tire – cord steel. Control of inclusion chemistry and variation in eutectic temperature and eutectic composition of MnO-Al2O3-SiO2 slag system have been studied, using Thermo-CalcR software. Relatively low liquidus temperatures are obtained for ratio of MnO / SiO2 = 0.5 - 1.5 and Al2O3 content from 10 - 20 mass%. It has been observed that the addition of Alumina leads to further increase in the liquidus temperature. The stability of inclusions is analyzed in terms of free energy values of related slag systems; and an appropriate minimum of Gibbs free energy value of slag phase observed at around 50 ppm of Oxygen. The observations could not be verified using thermodynamic experiments, but have been compared with findings in the open literature.展开更多
基金Project(18SYXHZ0069)supported by the Science and Technology Program of Sichuan Province,ChinaProjects(51974139,51664021)supported by the National Natural Science Foundation of China。
文摘Laboratory-scale experiments were performed to investigate the deoxidation of H13 tool steel with CaF_(2)-MgO-Al_(2)O_(3)-CaO-SiO_(2) slags at 1873 K.The calculation of thermodynamics and kinetics was also verified through the experimental results.The results show that[Si]-[O]reaction is the control reaction,and with the increase of basicity of slag,the limitation of deoxidation was decreased.The limitation of deoxidation is the lowest for the slag with basicity of 2.0.Under the conditions of the basicity of 2.0 and the content of CaF_(2) more than 50%,the limitation of deoxidation is less than 10×10^(−6),and it does not depend on the contents of Al_(2)O_(3) and CaF_(2) in slags.The mass transport of oxygen in the metal phase is the rate-controlling step,and the slag composition has no effect on the equilibrium time of deoxidation.Based on this finding,the optimized slag composition is designed and it contains the following components:51.5%CaF_(2),20.3%MgO,16.2%Al_(2)O_(3),8.2%CaO and 3.8%SiO_(2).In the case of the optimized deoxidizing slag,the total oxygen content in H13 steel can be reduced from 25×10^(−6) to 6×10^(−6).
文摘On the basis of the practical production of non-oriented silicon steel, the formation of Mg O·Al2O3 inclusions was analyzed in the process of "basic oxygen furnace(BOF) → RH → compact strip production(CSP)". The thermodynamic and kinetic conditions of the formation of Mg O·Al2O3 inclusions were discussed, and the behavior of slag entrapment in molten steel during RH refining was simulated by computational fluid dynamics(CFD) software. The results showed that the Mg O/Al2O3 mass ratio was in the range from 0.005 to 0.017 and that Mg O·Al2O3 inclusions were not observed before the RH refining process. In contrast, the Mg O/Al2O3 mass ratio was in the range from 0.30 to 0.50, and the percentage of Mg O·Al2O3 spinel inclusions reached 58.4% of the total inclusions after the RH refining process. The compositions of the slag were similar to those of the inclusions; furthermore, the critical velocity of slag entrapment was calculated to be 0.45 m·s^-1 at an argon flow rate of 698 L·min^-1, as simulated using CFD software. When the test steel was in equilibrium with the slag, [Mg] was 0.00024wt%–0.00028wt% and [Al]s was 0.31wt%–0.37wt%; these concentrations were theoretically calculated to fall within the Mg O·Al2O3formation zone, thereby leading to the formation of Mg O·Al2O3 inclusions in the steel. Thus, the formation of Mg O·Al2O3 inclusions would be inhibited by reducing the quantity of slag entrapment, controlling the roughing slag during casting, and controlling the composition of the slag and the Mg O content in the ladle refractory.
文摘Electroslag remelting (ESR) process using consumable electrode deoxidized with Ca-Si and Fe-Si instead of Al, and acid slag (CaF_2SiO_2Al_2O_3CaO) instead of universal slag ANF_6(CaF_2. 70 %+A1_2O_3.30 %) could change brittle inclusion (alumina) to ductile inclusion (silicate) in remelted steel. Fatigue life of bearing steel could be increased significantly in this way.
文摘The present work deals with thermodynamic modeling of oxide systems, in the context of slags and inclusions in steelmaking. The work has emphasis on oxides encountered during the production of tire – cord steel. Control of inclusion chemistry and variation in eutectic temperature and eutectic composition of MnO-Al2O3-SiO2 slag system have been studied, using Thermo-CalcR software. Relatively low liquidus temperatures are obtained for ratio of MnO / SiO2 = 0.5 - 1.5 and Al2O3 content from 10 - 20 mass%. It has been observed that the addition of Alumina leads to further increase in the liquidus temperature. The stability of inclusions is analyzed in terms of free energy values of related slag systems; and an appropriate minimum of Gibbs free energy value of slag phase observed at around 50 ppm of Oxygen. The observations could not be verified using thermodynamic experiments, but have been compared with findings in the open literature.