Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated f...Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.展开更多
Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact o...Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface.展开更多
Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise....Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise. LS-SVM suffers from the poor classification performance in the classification stage when there are noise samples. Thus, in the classification stage, it is necessary to design an effective algorithm to process the defects dataset obtained from the real production line. To this end, an adaptive weight function was employed to reduce the adverse effect of noise samples. Moreover, although LSSVM offers fast speed, it still suffers from a high computational complexity if the number of training samples is large. The time for steel surface defects classification should be as short as possible. Therefore, a sparse strategy was adopted to prune the training samples. Finally, since the steel surface defects classification belongs to unbalanced data classification, LSSVM algorithm is not applicable. Hence, the unbalanced data information was introduced to improve the classification performance. Comprehensively considering above-mentioned factors, an improved LS-SVM classification model was proposed, termed as ILS-SVM. Experimental results show that the new algorithm has the advantages of high speed and great anti-noise ability.展开更多
Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of ...Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.展开更多
The steel plate is one of the main products in steel industries,and its surface quality directly affects the final product performance.How to detect surface defects of steel plates in real time during the production p...The steel plate is one of the main products in steel industries,and its surface quality directly affects the final product performance.How to detect surface defects of steel plates in real time during the production process is a challenging problem.The single or fixed model compression method cannot be directly applied to the detection of steel surface defects,because it is difficult to consider the diversity of production tasks,the uncertainty caused by environmental factors,such as communication networks,and the influence of process and working conditions in steel plate production.In this paper,we propose an adaptive model compression method for steel surface defect online detection based on expert knowledge and working conditions.First,we establish an expert system to give lightweight model parameters based on the correlation between defect types and manufacturing processes.Then,lightweight model parameters are adaptively adjusted according to working conditions,which improves detection accuracy while ensuring real-time performance.The experimental results show that compared with the detection method of constant lightweight parameter model,the proposed method makes the total detection time cut down by 23.1%,and the deadline satisfaction ratio increased by 36.5%,while upgrading the accuracy by 4.2%and reducing the false detection rate by 4.3%.展开更多
文摘Focusing on strip steel surface defects classification, a novel support vector machine with adjustable hyper-sphere (AHSVM) is formulated. Meanwhile, a new multi-class classification method is proposed. Originated from support vector data description, AHSVM adopts hyper-sphere to solve classification problem. AHSVM can obey two principles: the margin maximization and inner-class dispersion minimization. Moreover, the hyper-sphere of AHSVM is adjustable, which makes the final classification hyper-sphere optimal for training dataset. On the other hand, AHSVM is combined with binary tree to solve multi-class classification for steel surface defects. A scheme of samples pruning in mapped feature space is provided, which can reduce the number of training samples under the premise of classification accuracy, resulting in the improvements of classification speed. Finally, some testing experiments are done for eight types of strip steel surface defects. Experimental results show that multi-class AHSVM classifier exhibits satisfactory results in classification accuracy and efficiency.
基金This work was supported by the National Natural Science Foundation of China(No.51674140)Natural Science Foundation of Liaoning Province,China(No.20180550067)+2 种基金Department of Education of Liaoning Province,China(Nos.2017LNQN11 and 2020LNZD06)University of Science and Technology Liaoning Talent Project Grants(No.601011507-20)University of Science and Technology Liaoning Team Building Grants(No.601013360-17).
文摘Defect classification is the key task of a steel surface defect detection system.The current defect classification algorithms have not taken the feature noise into consideration.In order to reduce the adverse impact of feature noise,an anti-noise multi-class classification method was proposed for steel surface defects.On the one hand,a novel anti-noise support vector hyper-spheres(ASVHs)classifier was formulated.For N types of defects,the ASVHs classifier built N hyper-spheres.These hyper-spheres were insensitive to feature and label noise.On the other hand,in order to reduce the costs of online time and storage space,the defect samples were pruned by support vector data description with parameter iteration adjustment strategy.In the end,the ASVHs classifier was built with sparse defect samples set and auxiliary information.Experimental results show that the novel multi-class classification method has high efficiency and accuracy for corrupted defect samples in steel surface.
基金the Natural Science Foundation of Liaoning Province,China(20180550067)Liaoning Province Ministry of Education Scientific Study Project(2020LNZD06 and 2017LNQN11)University of Science and Technology Liaoning Talent Project Grants(601011507-20 and 601013360-17).
文摘Least squares support vector machine (LS-SVM) plays an important role in steel surface defects classification because of its high speed. However, the defect samples obtained from the real production line may be noise. LS-SVM suffers from the poor classification performance in the classification stage when there are noise samples. Thus, in the classification stage, it is necessary to design an effective algorithm to process the defects dataset obtained from the real production line. To this end, an adaptive weight function was employed to reduce the adverse effect of noise samples. Moreover, although LSSVM offers fast speed, it still suffers from a high computational complexity if the number of training samples is large. The time for steel surface defects classification should be as short as possible. Therefore, a sparse strategy was adopted to prune the training samples. Finally, since the steel surface defects classification belongs to unbalanced data classification, LSSVM algorithm is not applicable. Hence, the unbalanced data information was introduced to improve the classification performance. Comprehensively considering above-mentioned factors, an improved LS-SVM classification model was proposed, termed as ILS-SVM. Experimental results show that the new algorithm has the advantages of high speed and great anti-noise ability.
基金supported by the Natural Science Foundation of Liaoning Province(No.2022-MS-353)Basic Scientific Research Project of Education Department of Liaoning Province(Nos.2020LNZD06 and LJKMZ20220640)。
文摘Surface defects can affect the quality of steel plate.Many methods based on computer vision are currently applied to surface defect detection of steel plate.However,their real-time performance and object detection of small defect are still unsatisfactory.An improved object detection network based on You Only Look One-level Feature(YOLOF)is proposed to show excellent performance in surface defect detection of steel plate,called DLF-YOLOF.First,the anchor-free detector is used to reduce the network hyperparameters.Secondly,deformable convolution network and local spatial attention module are introduced into the feature extraction network to increase the contextual information in the feature maps.Also,the soft non-maximum suppression is used to improve detection accuracy significantly.Finally,data augmentation is performed for small defect objects during training to improve detection accuracy.Experiments show the average precision and average precision for small objects are 42.7%and 33.5%at a detection speed of 62 frames per second on a single GPU,respectively.This shows that DLF-YOLOF has excellent performance to meet the needs of industrial real-time detection.
基金supported by the National Key R&D Program of China(No.2018AAA0100500)the National Natural Science Foundation of China(Nos.62232004 and 61632008)+3 种基金the Jiangsu Provincial Key Laboratory of Network and Information Security(No.BM2003201)the Key Laboratory of Computer Network and Information Integration of Ministry of Education of China(No.93K-9)the Collaborative Innovation Center of Novel Software Technology and Industrializationthe Big Data Computing Center of Southeast University in China for providing the experiment environment and computing facility.
文摘The steel plate is one of the main products in steel industries,and its surface quality directly affects the final product performance.How to detect surface defects of steel plates in real time during the production process is a challenging problem.The single or fixed model compression method cannot be directly applied to the detection of steel surface defects,because it is difficult to consider the diversity of production tasks,the uncertainty caused by environmental factors,such as communication networks,and the influence of process and working conditions in steel plate production.In this paper,we propose an adaptive model compression method for steel surface defect online detection based on expert knowledge and working conditions.First,we establish an expert system to give lightweight model parameters based on the correlation between defect types and manufacturing processes.Then,lightweight model parameters are adaptively adjusted according to working conditions,which improves detection accuracy while ensuring real-time performance.The experimental results show that compared with the detection method of constant lightweight parameter model,the proposed method makes the total detection time cut down by 23.1%,and the deadline satisfaction ratio increased by 36.5%,while upgrading the accuracy by 4.2%and reducing the false detection rate by 4.3%.