During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines...During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.展开更多
The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on t...The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.展开更多
Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed ...Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed in this paper.By this method,the sequence of collapse of overlying strata and the direction of propagation of strata movement are changed,the extent of roof-side deformation thereby is lessened,and boundary angle of roof-side subsidence is reduced by 5°-10°.The mechanism of this mining method for control of strata movement has been evidenced by numerical simulation and experiments with similarity materials.A subsidence prediction model based on the variation of mining influence propagation angle can be used to evaluate the surface movement and deformation of the mining method.The application of the method in No.3 Mine in Yaojie mining area has yielded the expected result.展开更多
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege...The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.展开更多
Based on the study of the slope with gently granular structure in Xingqiao open mine, a new safety cleaning bank mode for steep slope mining was developed, including setting up dint cut, and forming natural retaining ...Based on the study of the slope with gently granular structure in Xingqiao open mine, a new safety cleaning bank mode for steep slope mining was developed, including setting up dint cut, and forming natural retaining wall based on the character of gentle incline slope. It can effectively eliminate the impact of sliding body on the bottom working place and slope body, reduce the dilution of ore, keep rainwater from upper steps away, decrease influence of the weak intermediate layer, and cut cost of disposal waste rock. The safety and reliability of the mode were analyzed and verified from 3 aspects: static load calculation, ANSYS simulation of dynamic loading and spot experiment. The result of static loading calculation shows that the retaining wall can support accumulation and extrusion of granular body, and the glide or overturn disaster will not take place. The simulations of dynamic loading show that the retaining wall remains stable until sliding body collapses from 360 m (10 sublevels). Only one new safety cleaning bank in each 15 sublevels can fully meet the need of engineering. The new mode sustains steep slope (mining,) increases the angle of ultimate slope, and reduces invalid overburden amount of rock by 3%5%. The result of spot experiment has verified the exactness of the above calculations and simulations.展开更多
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in util...Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.展开更多
基金funded by the National Natural Science Foundation of China (Grants No. 41877273)the Innovative Research Groups of the National Natural Science Foundation of China (Grants No. 41521002)+1 种基金the State Key Laboratory of Geohazard Disaster Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grants No. SKLGP2017Z016)the Guizhou Provincial Geological Environment Monitoring Institute, and the Faer Coal Mine。
文摘During underground mining,accurate revelation on the deformation and failure mechanisms of a high-steep slope under multi-layer mining conditions facilitates the prevention and control of geological disasters in mines.Numerical simulation based on discrete element theory can be used to explore the characteristics and mechanism of action of deformation and failure of a slope under complex geological and multi-layer mining conditions.By utilising PFC2 D(particle flow code) software,the deformation and failure characteristics of a high-steep slope in Faer Coal Mine in Guizhou Province,China were investigated.Additionally,the mechanism of influence of different numbers of mining layers on the deformation and failure of the high and steep slope was elucidated.The result showed that after the goaf passed by the slope toe,multi-layer mining aggravated the subsidence and deformation of the slope toe:the slope toppled forward as it sank.The toppling of the slope changed the slope structures:the strata in the front of the slope were transformed from anti-dip to down-dip features.Extruded by collapsedtoppled rock mass,the slope toe and the rock mass located in the lower part of the slope toe generally exhibited a locking effect on the slope.Multi-layer mining degraded the overall stability of the slope,in that the total displacement of the slope was much greater than the total mining thickness of the coal seams.Based on the aforementioned research,ideas for preventing and controlling geological disasters during mining operations under a high-steep slope were proposed.
基金provided by the National Natural Science Foundation of China(No.90510002)the Science and Technology Research of the Ministry of Education of China(No.306008)
文摘The paper aims to identify a reasonable method for mining ultra-thick coal seams in an end-slope in surface mine, With a case study of Heidaigou surface coal mine(HSCM), the paper conducted a comparative research on three mining methods, namely Underground Mining Method(UMM), Highwall Mining System(HMS) and Local Steep Slope Mining Method(LSSMM). A model was firstly established to simulate the impact that UMM and HMS exert on monitoring points and surface deformation. The way that stripping and excavation amount varies with different slope angle, and the corresponding end slope stability were analyzed in the mode of LSSMM. Then a TOPSIS model was established by taking into account six indicators such as recovery ratio, technical complexity and adaptability, the impact on surface mining production, production safety and economic benefits. Finally, LSSMM was determined as the best mining method for mining ultra-thick coal seams in end slope in HSCM.
基金sponsored by the National Natural Science Foundation of China(Nos.51574242 and 5097412).
文摘Ultra-thick steep coal seam mining will inevitably lead to the increase of greater and violent ground subsidence and deformation.A subsidence control method by inversely-inclined slicing and upward mining is proposed in this paper.By this method,the sequence of collapse of overlying strata and the direction of propagation of strata movement are changed,the extent of roof-side deformation thereby is lessened,and boundary angle of roof-side subsidence is reduced by 5°-10°.The mechanism of this mining method for control of strata movement has been evidenced by numerical simulation and experiments with similarity materials.A subsidence prediction model based on the variation of mining influence propagation angle can be used to evaluate the surface movement and deformation of the mining method.The application of the method in No.3 Mine in Yaojie mining area has yielded the expected result.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10402033) and the Key Lab. Foun-dation of the Ministry of Education of China (No.04JS19).
文摘The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.
文摘Based on the study of the slope with gently granular structure in Xingqiao open mine, a new safety cleaning bank mode for steep slope mining was developed, including setting up dint cut, and forming natural retaining wall based on the character of gentle incline slope. It can effectively eliminate the impact of sliding body on the bottom working place and slope body, reduce the dilution of ore, keep rainwater from upper steps away, decrease influence of the weak intermediate layer, and cut cost of disposal waste rock. The safety and reliability of the mode were analyzed and verified from 3 aspects: static load calculation, ANSYS simulation of dynamic loading and spot experiment. The result of static loading calculation shows that the retaining wall can support accumulation and extrusion of granular body, and the glide or overturn disaster will not take place. The simulations of dynamic loading show that the retaining wall remains stable until sliding body collapses from 360 m (10 sublevels). Only one new safety cleaning bank in each 15 sublevels can fully meet the need of engineering. The new mode sustains steep slope (mining,) increases the angle of ultimate slope, and reduces invalid overburden amount of rock by 3%5%. The result of spot experiment has verified the exactness of the above calculations and simulations.
文摘Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a speciallymade reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.