期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Oscillatory Dynamics of Heterogeneous Stem Cell Regeneration
1
作者 Xiyin Liang Jinzhi Lei 《Communications on Applied Mathematics and Computation》 EI 2024年第1期431-453,共23页
Stem cell regeneration is an essential biological process in the maintenance of tissue homeostasis;dysregulation of stem cell regeneration may result in dynamic diseases that show oscillations in cell numbers.Cell het... Stem cell regeneration is an essential biological process in the maintenance of tissue homeostasis;dysregulation of stem cell regeneration may result in dynamic diseases that show oscillations in cell numbers.Cell heterogeneity and plasticity are necessary for the dynamic equilibrium of tissue homeostasis;however,how these features may affect the oscillatory dynamics of the stem cell regeneration process remains poorly understood.Here,based on a mathematical model of heterogeneous stem cell regeneration that includes cell heterogeneity and random transition of epigenetic states,we study the conditions to have oscillation solutions through bifurcation analysis and numerical simulations.Our results show various model system dynamics with changes in different parameters associated with kinetic rates,cellular heterogeneity,and plasticity.We show that introducing heterogeneity and plasticity to cells can result in oscillation dynamics,as we have seen in the homogeneous stem cell regeneration system.However,increasing the cell heterogeneity and plasticity intends to maintain tissue homeostasis under certain conditions.The current study is an initiatory investigation of how cell heterogeneity and plasticity may affect stem cell regeneration dynamics,and many questions remain to be further studied both biologically and mathematically. 展开更多
关键词 stem cell regeneration Heterogenous Hopf bifurcation Hematopoietic dynamical disease
下载PDF
No Intestinal Stem Cell Regeneration after Complete Progenitor Ablation in Drosophila Adult Midgut
2
作者 Yanfen Lu Zhouhua Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2015年第2期83-86,共4页
Adult stem cells or progenitors are essential for maintaining the normal structure and function of adult tissues (i.e., ho- meostasis). One of the best examples is the adult intestinal epithelium which is constantly... Adult stem cells or progenitors are essential for maintaining the normal structure and function of adult tissues (i.e., ho- meostasis). One of the best examples is the adult intestinal epithelium which is constantly renewed by the progeny of intestinal stem cells (ISCs). The proliferation and differentiation of adult stem cells must be tightly controlled in order to maintain resident tissue homeostasis. Mis-regulation of stem cell proliferation and differentiation leads to depletion or excessive proliferation of stem cells, eventually resulting in severe diseases such as cancer (Radtke and Clevers, 2005; Morrison and Spradling, 2008). Understanding the detailed regulatory mechanisms of stem cell proliferation and differ- entiation will shed insights into the causes of related human diseases. 展开更多
关键词 cell No Intestinal stem cell regeneration after Complete Progenitor Ablation in Drosophila Adult Midgut ISC
原文传递
Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus 被引量:3
3
作者 Fei-bin Zhu Xiang-jing Fang +6 位作者 De-wu Liu Ying Shao Hong-yan Zhang Yan Peng Qing-ling Zhong Yong-tie Li De-ming Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期493-501,共9页
Exogenous substance P accelerates wound healing in diabetes,but the mechanism remains poorly understood.Here,we established a rat model by intraperitoneally injecting streptozotocin.Four wounds(1.8 cm diameter) were... Exogenous substance P accelerates wound healing in diabetes,but the mechanism remains poorly understood.Here,we established a rat model by intraperitoneally injecting streptozotocin.Four wounds(1.8 cm diameter) were drilled using a self-made punch onto the back,bilateral to the vertebral column,and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds.With the combined treatment the wound-healing rate was 100% at 14 days.With prolonged time,type I collagen content gradually increased,yet type III collagen content gradually diminished.Abundant protein gene product 9.5-and substance P-immunoreactive nerve fibers regenerated.Partial nerve fiber endings extended to the epidermis.The therapeutic effects of combined substance P and epidermal stem cells were better than with amniotic membrane and either factor alone.Our results suggest that the combination of substance P and epidermal stem cells effectively contributes to nerve regeneration and wound healing in diabetic rats. 展开更多
关键词 nerve regeneration diabetes substance P epidermal stem cells sensory nerve wound healing collagen neural regeneration
下载PDF
Mesenchymal stem cell therapy for retinal ganglion cell neuroprotection and axon regeneration 被引量:2
4
作者 Ben Mead Ben A.Scheven 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期371-373,共3页
Retinal ganglion cells (RGCs) are responsible for propagat- ing signals derived from visual stimuli in the eye to the brain, along their axons within the optic nerve to the superior colliculus, lateral geniculate nu... Retinal ganglion cells (RGCs) are responsible for propagat- ing signals derived from visual stimuli in the eye to the brain, along their axons within the optic nerve to the superior colliculus, lateral geniculate nucleus and visu- al cortex of the brain. Damage to the optic nerve either through trauma, such as head injury, or degenerative dis- ease, such as glaucoma causes irreversible loss of function through degeneration of non-regenerating RGC axons and death of irreplaceable RGCs, ultimately leading to blindness (Berry et al., 2008). The degeneration of RGCs and their axons is due to the loss of the necessary source of retrogradely transported neurotrophic factors (NTFs) being hindered by axonal injury. NTFs are survival factors for neurons and play a pivotal part in axon regeneration. Stem cells particularly mesenchymal stem cells (MSCs) have been shown to possess a natural intrinsic capacity for paracrine support, releasing multiple signalling mol- ecules including NTFs. By transplanting MSCs into the vitreous, they are positioned adjacent to the injured reti- na to provide paracrine-mediated therapy for the retinal neuronal cells (Johnson et al., 2010a; Mead et al., 2013). Additionally, MSCs may be pre-differentiated into sup- portive glial-like cells, such as Schwann cells, which could further increase their potential for paracrine support of injured neurons (Martens et al., 2013). Thus, MSCs have received considerable attention as a new cellular therapy for both traumatic and degenerative eye disease, acting as an alternative source of NTFs, protecting injured RGCs and promoting regeneration of their axons (Figure 1). 展开更多
关键词 DPSCs RGCS BMSCS stem Mesenchymal stem cell therapy for retinal ganglion cell neuroprotection and axon regeneration cell
下载PDF
Clinical trial with traditional Chinese medicine intervention ''tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment'' for chronic hepatitis B-associated liver failure 被引量:21
5
作者 Han-Min Li Zhi-Hua Ye +21 位作者 Jun Zhang Xiang Gao Yan-Ming Chen Xin Yao Jian-Xun Gu Lei Zhan Yang Ji Jian-Liang Xu Ying-He Zeng Fan Yang Lin Xiao Guo-Guang Sheng Wei Xin Qi Long Qing-Jing Zhu Zhao-Hong Shi Lian-Guo Ruan Jia-Yao Yang Chang-Chun Li Hong-Bin Wu Sheng-Duo Chen Xin-La Luo 《World Journal of Gastroenterology》 SCIE CAS 2014年第48期18458-18465,共8页
AIM:To study the clinical efficacy of traditional Chinese medicine(TCM)intervention"tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment"("TTK... AIM:To study the clinical efficacy of traditional Chinese medicine(TCM)intervention"tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment"("TTK")for treating liver failure due to chronic hepatitis B.METHODS:We designed the study as a randomized controlled clinical trial.Registration number of Chinese Clinical Trial Registry is Chi CTR-TRC-12002961.A total of 144 patients with liver failure due to infection with chronic hepatitis B virus were enrolled in this randomized controlled clinical study.Participants were randomly assigned to the following three groups:(1)a modern medicine control group(MMC group,36patients);(2)a"tonifying qi and detoxification"("TQD")group(72 patients);and(3)a"tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment"("TTK")group(36patients).Patients in the MMC group received general internal medicine treatment;patients in the"TQD"group were given a TCM formula"tonifying qi and detoxification"and general internal medicine treatment;patients in the"TTK"group were given a TCM formula of"TTK"and general internal medicine treatment.All participants were treated for 8 wk and then followed at 48 wk following their final treatment.The primaryefficacy end point was the patient fatality rate in each group.Measurements of various virological and biochemical indicators served as secondary endpoints.The one-way analysis of variance and the t-test were used to compare patient outcomes in the different treatment groups.RESULTS:At the 48-wk post-treatment time point,the patient fatality rates in the MMC,"TQD",and"TTK"groups were 51.61%,35.38%,and 16.67%,respectively,and the differences between groups were statistically significant(P<0.05).However,there were no significant differences in the levels of hepatitis B virus DNA or prothrombin activity among the three groups(P>0.05).Patients in the"TTK"group had significantly higher levels of serum total bilirubin compared to MMC subjects(339.40μmol/L±270.09μmol/L vs 176.13μmol/L±185.70μmol/L,P=0.014).Serum albumin levels were significantly increased in both the"TQD"group and"TTK"group as compared with the MMC group(31.30 g/L±4.77g/L,30.72 g/L±2.89 g/L vs 28.57 g/L±4.56 g/L,P<0.05).There were no significant differences in levels of alanine transaminase among the three groups(P>0.05).Safety data showed that there was one case of stomachache in the"TQD"group and one case of gastrointestinal side effect in the"TTK"group.CONCLUSION:Treatment with"TTK"improved the survival rates of patients with liver failure due to chronic hepatitis B.Additionally,liver tissue was regenerated and liver function was restored. 展开更多
关键词 Clinical study 'Tonifying the kidney to promote liver regeneration and repair by affecting stem cells and their microenvironment'('TTK') Liver regeneration Treatment with integrated traditional and Western medicine Chronic hepatitis B-associated liver failure
下载PDF
Editor's Choice——Umbilical cord blood mesenchymal stem cell differentiation and transplantation in neural regeneration
6
《Neural Regeneration Research》 SCIE CAS CSCD 2011年第22期1714-1714,共1页
Previous in vivo experiments have shown that human umbilical cord blood mesenchymal stem cells can promote the proliferation and differentiation of damaged celts, and help to repair damaged sites, Recent studies have ... Previous in vivo experiments have shown that human umbilical cord blood mesenchymal stem cells can promote the proliferation and differentiation of damaged celts, and help to repair damaged sites, Recent studies have reported that umbilical cord blood-derived mesenchymal stem cells can differentiate into neurons and glial cells. Recent studies have reported that the repair mechanisms underlying cord blood stern cells involve the replacement of damaged cells and mediation of the local micro-environment. 展开更多
关键词 Editor’s Choice Umbilical cord blood mesenchymal stem cell differentiation and transplantation in neural regeneration cell stem
下载PDF
Stem cells:a promising candidate to treat neurological disorders 被引量:7
7
作者 Chang-Geng Song Yi-Zhe Zhang +5 位作者 Hai-Ning Wu Xiu-Li Cao Chen-Jun Guo Yong-Qiang Li Min-Hua Zheng Hua Han 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第7期1294-1304,共11页
Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system.Therefore,based on the regenerative capacity of stem cells,transplantation therapies of various stem ce... Neurologic impairments are usually irreversible as a result of limited regeneration in the central nervous system.Therefore,based on the regenerative capacity of stem cells,transplantation therapies of various stem cells have been tested in basic research and preclinical trials,and some have shown great prospects.This manuscript overviews the cellular and molecular characteristics of embryonic stem cells,induced pluripotent stem cells,neural stem cells,retinal stem/progenitor cells,mesenchymal stem/stromal cells,and their derivatives in vivo and in vitro as sources for regenerative therapy.These cells have all been considered as candidates to treat several major neurological disorders and diseases,owing to their self-renewal capacity,multi-directional differentiation,neurotrophic properties,and immune modulation effects.We also review representative basic research and recent clinical trials using stem cells for neurodegenerative diseases,including Parkinson's disease,Alzheimer's disease,and age-related macular degeneration,as well as traumatic brain injury and glioblastoma.In spite of a few unsuccessful cases,risks of tumorigenicity,and ethical concerns,most results of animal experiments and clinical trials demonstrate efficacious therapeutic effects of stem cells in the treatment of nervous system disease.In summary,these emerging findings in regenerative medicine are likely to contribute to breakthroughs in the treatment of neurological disorders.Thus,stem cells are a promising candidate for the treatment of nervous system diseases. 展开更多
关键词 nerve regeneration stem cells transplantation stem cell therapy nervous system neurodegenerative disease neurological disorders animal experiment clinical trial regenerative medicine neural regeneration
下载PDF
Human umbilical cord blood stem cells and brainderived neurotrophic factor for optic nerve injury: a biomechanical evaluation 被引量:13
8
作者 Zhong-jun Zhang Ya-jun Li +5 位作者 Xiao-guang Liu Feng-xiao Huang Tie-jun Liu Dong-mei Jiang Xue-man Lv Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1134-1138,共5页
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model... Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood stem cells brain-derived neurotrophic factor biomechanical properties neural regeneration
下载PDF
Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury 被引量:24
9
作者 Hai-xiao Zhou Zhi-gang Liu +1 位作者 Xiao-jiao Liu Qian-xue Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期107-113,共7页
Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjuncti... Transplantation of umbilical cord-derived mesenchymal stem cells(UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen(HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized fluid(2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantation via the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function significantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and significantly promotes recovery of neurological functions. 展开更多
关键词 nerve regeneration traumatic brain injury umbilical cord mesenchymal stem cells transplantation hyperbaric oxygen rats craniocerebral trauma neurological function neural regeneration
下载PDF
Bone marrow mesenchymal stem cells transplantation promotes the release of endogenous erythropoietin after ischemic stroke 被引量:9
10
作者 Wen Lv Wen-yu Li +2 位作者 Xiao-yan Xu Hong Jiang Oh Yong Bang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1265-1270,共6页
This study investigated whether bone marrow mesenchymal stem cell(BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in ra... This study investigated whether bone marrow mesenchymal stem cell(BMSC) transplantation protected ischemic cerebral injury by stimulating endogenous erythropoietin. The model of ischemic stroke was established in rats through transient middle cerebral artery occlusion. Twenty-four hours later, 1 × 106 human BMSCs(h BMSCs) were injected into the tail vein. Fourteen days later, we found that h BMSCs promoted the release of endogenous erythropoietin in the ischemic region of rats. Simultaneously, 3 μg/d soluble erythropoietin receptor(s EPOR) was injected into the lateral ventricle, and on the next 13 consecutive days. s EPOR blocked the release of endogenous erythropoietin. The neurogenesis in the subventricular zone was less in the h BMSCs + s EPOR group than in the h BMSCs + heat-denatured s EPOR group. The adhesive-removal test result and the modified Neurological Severity Scores(m NSS) were lower in the h BMSCs + s EPOR group than in the heat-denatured s EPOR group. The adhesive-removal test result and m NSS were similar between the h BMSCs + heat-denatured s EPOR group and the h BMSCs + s EPOR group. These findings confirm that BMSCs contribute to neurogenesis and improve neurological function by promoting the release of endogenous erythropoietin following ischemic stroke. 展开更多
关键词 nerve regeneration stem cells erythropoietin ischemic stroke erythropoietin receptor cell proliferation cytokine Brd U functional recovery NSFC grant neural regeneration
下载PDF
Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation 被引量:5
11
作者 Ya-jing Zhou Jian-min Liu +3 位作者 Shu-ming Wei Yun-hao Zhang Zhen-hua Qu Shu-bo Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1305-1311,共7页
Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair u... Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. 展开更多
关键词 nerve regeneration bone marrow mesenchymal stem cells stem cell transplantation propofol spinal cord injury repair neuroprotection anesthesia neural regeneration
下载PDF
Combined use of Y-tube conduits with human umbilical cord stem cells for repairing nerve bifurcation defects 被引量:2
12
作者 Aikeremujiang.Muheremu Jun-gang Sun +3 位作者 Xi-yuan Wang Fei Zhang Qiang Ao Jiang Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期664-669,共6页
Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduit... Given the anatomic complexity at the bifurcation point of a nerve trunk,enforced suturing between stumps can lead to misdirection of nerve axons,thereby resulting in adverse consequences.We assumed that Y-tube conduits injected with human umbilical cord stem cells could be an effective method to solve such problems,but studies focused on the best type of Y-tube conduit remain controversial.Therefore,the present study evaluated the applicability and efficacy of various types of Y-tube conduits containing human umbilical cord stem cells for treating rat femoral nerve defects on their bifurcation points.At 12 weeks after the bridging surgery that included treatment with different types of Y-tube conduits,there were no differences in quadriceps femoris muscle weight or femoral nerve ultrastructure.However,the Y-tube conduit group with longer branches and a short trunk resulted in a better outcome according to retrograde labeling and electrophysiological analysis.It can be concluded from the study that repairing a mixed nerve defect at its bifurcation point with Y-tube conduits,in particular those with long branches and a short trunk,is effective and results in good outcomes. 展开更多
关键词 nerve regeneration peripheral nerve injury nerve conduit selective nerve regeneration chemotaxis human umbilical cord blood stem cell stem cell transplantation neural regeneration
下载PDF
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization 被引量:10
13
作者 Xue-man Lv Yan Liu +2 位作者 Fei Wu Yi Yuan Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期652-656,共5页
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a... The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood-derived stem cells brain-derived neurotrophic factors creep histomorphology stress relaxation viscoelasticity neural regeneration
下载PDF
Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells 被引量:3
14
作者 Lei Zhang Xiao Han +3 位作者 Xiang Cheng Xue-feng Tan He-yan Zhao Xin-hua Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期597-603,共7页
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus.This indicates that the denervated hippocampus provides an environment for neuronal d... Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus.This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells.However,the pathways and mechanisms in this process are still unclear.Seven days after fimbria fornix transection,our reverse transcription polymerase chain reaction,western blot assay,and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor m RNA and protein expression in the denervated hippocampus.Moreover,neural stem cells derived from hippocampi of fetal(embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days,with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected.Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus,which may promote neuronal differentiation of neural stem cells in the denervated hippocampus. 展开更多
关键词 nerve regeneration ciliary neurotrophic factor hippocampus neural stem cells neurons neuronal differentiation fimbria-fornix transection neural regeneration
下载PDF
The promise of stem cell-based therapeutics in ophthalmology 被引量:2
15
作者 Israel Aharony Shalom Michowiz Nitza Goldenberg-Cohen 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期173-180,共8页
The promising role of cellular therapies in the preservation and restoration of visual function has prompted intensive efforts to characterize embryonic, adult, and induced pluripotent stem cells for regenerative purp... The promising role of cellular therapies in the preservation and restoration of visual function has prompted intensive efforts to characterize embryonic, adult, and induced pluripotent stem cells for regenerative purposes. Three main approaches to the use of stem cells have been described: sustained drug delivery, immunomodulation, and differentiation into various ocular structures. Studies of the differentiation capacity of all three types of stem cells into epithelial, neural, glial and vascular phenotypes have reached proof-of-concept in culture, but the correction of vision is still in the early developmental stages, and the requirements for effective in vivo implementation are still unclear. We present an overview of some of the preclinical findings on stem-cell rescue and regeneration of the cornea and retina in acute injury and degenerative disorders. 展开更多
关键词 embryonic stem cells adult stem cells induced pluripotent stem cells cornea retina neuroprotection immunomodulation tissue recovery regeneration acute ocular injury degenerative retinal disorders
下载PDF
Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering 被引量:3
16
作者 Jun-Xi Xiang Xing-Long Zheng +4 位作者 Rui Gao Wan-Quan Wu Xu-Long Zhu Jian-Hui Li Yi Lv 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2015年第5期502-508,共7页
BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoo... BACKGROUND: The potential application of decellularized liver scaffold for liver regeneration is limited by severe shortage of donor organs. Attempt of using heterograft scaffold is accompanied with high risks of zoonosis and immunological rejection. We proposed that the spleen, which procured more extensively than the liver, could be an ideal source of decellularized scaffold for liver regeneration. METHODS: After harvested from donor rat, the spleen was processed by 12-hour freezing/thawing ×2 cycles, then circulation perfusion of 0.02% trypsin and 3% Triton X-100 sequentially through the splenic artery for 32 hours in total to prepare decellularized scaffold. The structure and component characteristics of the scaffold were determined by hematoxylin and eosin and immumohistochemical staining, scanning electron microscope, DNA detection, porosity measurement, biocompatibility and cytocompatibility test. Recellularization of scaffold by 5×106 bone marrow mesenchymal stem cells(BMSCs) was carried out to preliminarily evaluate the feasibility of liver regeneration by BMSCs reseeding and differentiation in decellularized splenic scaffold.RESULTS: After decellularization, a translucent scaffold, which retained the gross shape of the spleen, was generated. Histological evaluation and residual DNA quantitation revealed the remaining of extracellular matrix without nucleus and cytoplasm residue. Immunohistochemical study proved the existence of collagens I, IV, fibronectin, laminin and elastin in decellularized splenic scaffold, which showed a similarity with decellularized liver. A scanning electron microscope presented the remaining three-dimensional porous structure of extracellular matrix and small blood vessels. The poros-ity of scaffold, aperture of 45.36±4.87 μm and pore rate of 80.14%±2.99% was suitable for cell engraftment. Subcutaneous implantation of decellularized scaffold presented good histocompatibility, and recellularization of the splenic scaffold demonstrated that BMSCs could locate and survive in the decellularized matrix. CONCLUSION: Considering the more extensive organ source and satisfying biocompatibility, the present study indicated that the three-dimensional decellularized splenic scaffold might have considerable potential for liver regeneration when combined with BMSCs reseeding and differentiation. 展开更多
关键词 tissue engineering liver regeneration decellularized scaffold spleen bone marrow mesenchymal stem cells
下载PDF
Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews 被引量:4
17
作者 Liu-lin Xiong Zhi-wei Chen Ting-hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期591-596,共6页
Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro prol... Neural stem cells promote neuronal regeneration and repair of brain tissue after injury,but have limited resources and proliferative ability in vivo.We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews,a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research.We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38,and added nerve growth factor(100 μg/L) to the culture medium.Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls.After 3 days,fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells.These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews. 展开更多
关键词 nerve regeneration tree shrews hippocampus neural stem cells cell proliferation nerve growth factor neurosphere embryo cell number cell therapy in vitro neural regeneration
下载PDF
Correlation between receptor-interacting protein 140 expression and directed differentiation of human embryonic stem cells into neural stem cells 被引量:3
18
作者 Zhu-ran Zhao Wei-dong Yu +7 位作者 Cheng Shi Rong Liang Xi Chen Xiao Feng Xue Zhang Qing Mu Huan Shen Jing-zhu Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期118-124,共7页
Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural dif... Overexpression of receptor-interacting protein 140(RIP140) promotes neuronal differentiation of N2 a cells via extracellular regulated kinase 1/2(ERK1/2) signaling.However,involvement of RIP140 in human neural differentiation remains unclear.We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells.Moreover,RIP140 negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation,and positively correlated with the neural stem cell marker Nestin during later stages.Thus,ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced. 展开更多
关键词 nerve regeneration receptor-interacting protein 140 neural stem cells human embryonic stem cells directed differentiation Oct4 Sox2 Nestin extracellular regulated kinase 1/2 signaling pathway neural regeneration
下载PDF
Differentiation of Wharton's jelly mesenchymal stem cells into neurons in alginate scaffold
19
作者 Seyed Mojtaba Hosseini Attiyeh Vasaghi +3 位作者 Newsha Nakhlparvar Reza Roshanravan Tahereh Talaei-khozani Zahra Razi 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第8期1312-1316,共5页
Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for cultur... Alginate scaffold has been considered as an appropriate biomaterial for promoting the differentiation of embryonic stem cells toward neuronal cell lineage. We hypothesized that alginate scaffold is suitable for culturing Wharton’s jelly mesenchymal stem cells(WJMSCs) and can promote the differentiation of WJMSCs into neuron-like cells. In this study, we cultured WJMSCs in a three-dimensional scaffold fabricated by 0.25% alginate and 50 m M Ca Cl2 in the presence of neurogenic medium containing 10 μM retinoic acid and 20 ng/m L basic fibroblast growth factor. These cells were also cultured in conventional two-dimensional culture condition in the presence of neurogenic medium as controls. After 10 days, immunofluorescence staining was performed for detecting β-tubulin(marker for WJMSCs-differentiated neuron) and CD271(motor neuron marker). β-Tubulin and CD271 expression levels were significantly greater in the WJMSCs cultured in the three-dimensional alginate scaffold than in the conventional two-dimensional culture condition. These findings suggest that three-dimensional alginate scaffold cell culture system can induce neuronal differentiation of WJMSCs effectively. 展开更多
关键词 nerve regeneration Wharton’s jelly mesenchymal stem cells mesenchymal stem cells neurons motor neurons alginate 3D scaffold neural regeneration
下载PDF
The potential of neural transplantation for brain repair and regeneration following traumatic brain injury 被引量:3
20
作者 Dong Sun 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期18-22,共5页
Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a p... Traumatic brain injury is a major health problem worldwide. Currently, there is no effective treatment to improve neural structural repair and functional recovery of patients in the clinic. Cell transplantation is a potential strategy to repair and regenerate the injured brain. This review article summarized recent development in cell transplantation studies for post-traumatic brain injury brain repair with varying types of cell sources. It also discussed the potential of neural transplantation to repair/promote recovery of the injured brain following traumatic brain injury. 展开更多
关键词 traumatic brain injury stem cells neural transplantation regeneration functional recovery
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部