期刊文献+
共找到4,534篇文章
< 1 2 227 >
每页显示 20 50 100
Hepatocyte growth factor enhances the ability of dental pulp stem cells to ameliorate atherosclerosis in apolipoprotein E-knockout mice
1
作者 Han Duan Ning Tao +8 位作者 Lin Lv Kai-Xin Yan Yong-Gang You Zhuang Mao Chang-Yao Wang Xue Li Jia-Yan Jin Chu-Tse Wu Hua Wang 《World Journal of Stem Cells》 SCIE 2024年第5期575-590,共16页
BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammato... BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflam-mation-related diseases.Hepatocyte growth factor(HGF)is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases.AIM To modify DPSCs with HGF(DPSC-HGF)and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout(ApoE-/-)mouse model and an in vitro cellular model.METHODS ApoE-/-mice were fed with a high-fat diet(HFD)for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs(DPSC-Null)through tail vein at weeks 4,7,and 11,respectively,and the therapeutic efficacy and mechanisms were analyzed by histopathology,flow cytometry,lipid and glucose measurements,real-time reverse transcription polymerase chain reaction(RT-PCR),and enzyme-linked immunosorbent assay at the different time points of the experiment.An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells(HAOECs),and indirect co-cultured with supernatant of DPSC-Null(DPSC-Null-CM)or DPSC-HGF-CM,and the effect and mechanisms were analyzed by flow cytometry,RT-PCR and western blot.Nuclear factor-κB(NF-κB)activators and inhibitors were also used to validate the related signaling pathways.RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors,and the percentage of macrophages in the aorta,and DPSC-HGF treatment had more pronounced effects.DPSCs treatment had no effect on serum lipoprotein levels.The FACS results showed that DPSCs treatment reduced the percentages of monocytes,neutrophils,and M1 macrophages in the peripheral blood and spleen.DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-αstimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway.CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/-mice on a HFD,and could be of greater value in stem cell-based treatments for AS. 展开更多
关键词 ATHEROSCLEROSIS Apolipoprotein E-knockout mice cell therapy Dental pulp stem cells Hepatocyte growth factor
下载PDF
Microvesicles derived from mesenchymal stem cells inhibit acute respiratory distress syndrome-related pulmonary fibrosis in mouse partly through hepatocyte growth factor
2
作者 Qi-Hong Chen Ying Zhang +4 位作者 Xue Gu Peng-Lei Yang Jun Yuan Li-Na Yu Jian-Mei Chen 《World Journal of Stem Cells》 SCIE 2024年第8期811-823,共13页
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to ex... BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer. 展开更多
关键词 Microvesicles derived from mesenchymal stem cells Acute respiratory distress syndrome Pulmonary fibrosis Hepatocyte growth factor Mesenchymal stromal cells
下载PDF
Multiple pretreatments can effectively improve the functionality of mesenchymal stem cells 被引量:2
3
作者 Xin-Xing Wan Xi-Min Hu Kun Xiong 《World Journal of Stem Cells》 SCIE 2024年第2期58-63,共6页
In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cell... In this editorial,we offer our perspective on the groundbreaking study entitled“Hypoxia and inflammatory factor preconditioning enhances the immunosup-pressive properties of human umbilical cord mesenchymal stem cells”,recently published in World Journal of Stem Cells.Despite over three decades of research on the clinical application of mesenchymal stem cells(MSCs),only a few therapeutic products have made it to clinical use,due to multiple preclinical and clinical challenges yet to be addressed.The study proved the hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics,which revealed the combination of inflammatory factors and hypoxic preconditioning offers a promising approach to enhance the function of MSCs.As we delve deeper into the intricacies of pretreat-ment methodologies,we anticipate a transformative shift in the landscape of MSC-based therapies,ultimately contributing to improved patient outcomes and advancing the field as a whole. 展开更多
关键词 Mesenchymal stem cells Inflammatory factor HYPOXIA PRETREATMENT
下载PDF
Reveal more mechanisms of precondition mesenchymal stem cells inhibiting inflammation
4
作者 Yi Li Qian-Qian Chen En-Qiang Linghu 《World Journal of Stem Cells》 SCIE 2024年第4期459-461,共3页
Hypoxia can get more ability to inhibit inflammation.But how it impact on survival time of mesenchymal stem cells(MSCs)is confusing and how preconditioned MSCs inhibiting inflammation are partially known.Those issues ... Hypoxia can get more ability to inhibit inflammation.But how it impact on survival time of mesenchymal stem cells(MSCs)is confusing and how preconditioned MSCs inhibiting inflammation are partially known.Those issues decided the value of preconditioned MSCs by hypoxia. 展开更多
关键词 Mesenchymal stem cell Hypoxia-inducible factor HYPOXIA INFLAMMATION MACROPHAGE
下载PDF
Human umbilical cord mesenchymal stem cells derivedexosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity
5
作者 Xiao-Tian Zhang Bo-Wen Zhao +1 位作者 Yuan-Long Zhang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1238-1247,共10页
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en... AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway. 展开更多
关键词 human umbilical cord mesenchymal stem cells retinal astrocytes retinopathy of prematurity vascular endothelial growth factor hypoxia inducible factor
下载PDF
Potential plausible role of Wharton’s jelly mesenchymal stem cells for diabetic bone regeneration
6
作者 Sheng Zheng Guan-Yu Hu +1 位作者 Jun-Hua Li Yi-Kai Li 《World Journal of Stem Cells》 SCIE 2024年第8期824-826,共3页
This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potent... This letter addresses the review titled“Wharton’s jelly mesenchymal stem cells:Future regenerative medicine for clinical applications in mitigation of radiation injury”.The review highlights the regenerative potential of Wharton’s jelly mesenchymal stem cells(WJ-MSCs)and describes why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine.The potential plausible role of WJ-MSCs for diabetic bone regeneration should be noticeable,which will provide a new strategy for improving bone regeneration under diabetic conditions. 展开更多
关键词 Wharton’s jelly mesenchymal stem cells Vascular endothelial growth factor OSTEOGENESIS ANGIOGENESIS Diabetic bone regeneration
下载PDF
Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells 被引量:4
7
作者 Hang Li Xiao-Qing Ji +1 位作者 Shu-Ming Zhang Ri-Hui Bi 《World Journal of Stem Cells》 SCIE 2023年第11期999-1016,共18页
BACKGROUND Mesenchymal stem cells(MSCs)have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties.However,MSCs exposed to the harsh inflammatory environment of da... BACKGROUND Mesenchymal stem cells(MSCs)have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties.However,MSCs exposed to the harsh inflammatory environment of damaged tissue after intravenous transplantation cannot exert their biological effects,and therefore,their therapeutic efficacy is reduced.In this challenging context,an in vitro preconditioning method is necessary for the development of MSC-based therapies with increased immunomodulatory capacity and transplantation efficacy.AIM To determine whether hypoxia and inflammatory factor preconditioning increases the immunosuppressive properties of MSCs without affecting their biological characteristics.METHODS Umbilical cord MSCs(UC-MSCs)were pretreated with hypoxia(2%O_(2))exposure and inflammatory factors(interleukin-1β,tumor necrosis factor-α,interferon-γ)for 24 h.Flow cytometry,polymerase chain reaction,enzyme-linked immunosorbent assay and other experimental methods were used to evaluate the biological characteristics of pretreated UC-MSCs and to determine whether pretreatment affected the immunosuppressive ability of UC-MSCs in coculture with immune cells.RESULTS Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their viability,proliferation or size.In addition,pretreatment significantly decreased the expression of coagulationrelated tissue factors but did not affect the expression of other surface markers.Similarly,mitochondrial function and integrity were retained.Although pretreatment promoted UC-MSC apoptosis and senescence,it increased the expression of genes and proteins related to immune regulation.Pretreatment increased peripheral blood mononuclear cell and natural killer(NK)cell proliferation rates and inhibited NK cell-induced toxicity to varying degrees.CONCLUSION In summary,hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics. 展开更多
关键词 Mesenchymal stem cells Umbilical cord PRECONDITIONING Hypoxia Inflammatory factors Immune regulation
下载PDF
MicroRNA-146a Promotes Embryonic Stem Cell Differentiation towards Vascular Smooth Muscle Cells through Regulation of Kruppel-like Factor 4 被引量:2
8
作者 Qing ZHANG Rong-rong PAN +1 位作者 Yu-tao WU Yu-miao WEI 《Current Medical Science》 SCIE CAS 2023年第2期223-231,共9页
Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis... Objective Vascular smooth muscle cell(VSMC)differentiation from stem cells is one source of the increasing number of VSMCs that are involved in vascular remodeling-related diseases such as hypertension,atherosclerosis,and restenosis.MicroRNA-146a(miR-146a)has been proven to be involved in cell proliferation,migration,and tumor metabolism.However,little is known about the functional role of miR-146a in VSMC differentiation from embryonic stem cells(ESCs).This study aimed to determine the role of miR-146a in VSMC differentiation from ESCs.Methods Mouse ESCs were differentiated into VSMCs,and the cell extracts were analyzed by Western blotting and RT-qPCR.In addition,luciferase reporter assays using ESCs transfected with miR-146a/mimic and plasmids were performed.Finally,C57BL/6J female mice were injected with mimic or miR-146a-overexpressing ESCs,and immunohistochemistry,Western blotting,and RT-qPCR assays were carried out on tissue samples from these mice.Results miR-146a was significantly upregulated during VSMC differentiation,accompanied with the VSMC-specific marker genes smooth muscle-alpha-actin(SMαA),smooth muscle 22(SM22),smooth muscle myosin heavy chain(SMMHC),and h1-calponin.Furthermore,overexpression of miR-146a enhanced the differentiation process in vitro and in vivo.Concurrently,the expression of Kruppel-like factor 4(KLF4),predicted as one of the top targets of miR-146a,was sharply decreased in miR-146a-overexpressing ESCs.Importantly,inhibiting KLF4 expression enhanced the VSMC-specific gene expression induced by miR-146a overexpression in differentiating ESCs.In addition,miR-146a upregulated the mRNA expression levels and transcriptional activity of VSMC differentiation-related transcription factors,including serum response factor(SRF)and myocyte enhancer factor 2c(MEF-2c).Conclusion Our data support that miR-146a promotes ESC-VSMC differentiation through regulating KLF4 and modulating the transcription factor activity of VSMCs. 展开更多
关键词 microRNA-146a embryonic stem cells DIFFERENTIATION vascular smooth muscle cells Kruppel-like factor 4
下载PDF
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
9
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 Neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION Neural developmental disorde
下载PDF
MicroRNA-584-5p/RUNX family transcription factor 2 axis mediates hypoxia-induced osteogenic differentiation of periosteal stem cells
10
作者 Jia-Jia Lu Xiao-Jian Shi +3 位作者 Qiang Fu Yong-Chuan Li Lei Zhu Nan Lu 《World Journal of Stem Cells》 SCIE 2023年第10期979-988,共10页
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM... BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia. 展开更多
关键词 Periosteal stem cell Osteogenic differentiation RUNX family transcription factor 2 MiroRNA-584-5p
下载PDF
Overexpression of vascular endothelial growth factor enhances the neuroprotective effects of bone marrow mesenchymal stem cell transplantation in ischemic stroke 被引量:5
11
作者 Cui Liu Zhi-Xiang Yang +6 位作者 Si-Qi Zhou Ding Ding Yu-Ting Hu Hong-Ning Yang Dong Han Shu-Qun Hu Xue-Mei Zong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1286-1292,共7页
Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endot... Although bone marrow mesenchymal stem cells(BMSCs)might have therapeutic potency in ischemic stroke,the benefits are limited.The current study investigated the effects of BMSCs engineered to overexpress vascular endothelial growth factor(VEGF)on behavioral defects in a rat model of transient cerebral ischemia,which was induced by middle cerebral artery occlusion.VEGF-BMSCs or control grafts were injected into the left striatum of the infarcted hemisphere 24 hours after stroke.We found that compared with the stroke-only group and the vehicle-and BMSCs-control groups,the VEGF-BMSCs treated animals displayed the largest benefits,as evidenced by attenuated behavioral defects and smaller infarct volume 7 days after stroke.Additionally,VEGF-BMSCs greatly inhibited destruction of the blood-brain barrier,increased the regeneration of blood vessels in the region of ischemic penumbra,and reducedneuronal degeneration surrounding the infarct core.Further mechanistic studies showed that among all transplant groups,VEGF-BMSCs transplantation induced the highest level of brain-derived neurotrophic factor.These results suggest that BMSCs transplantation with vascular endothelial growth factor has the potential to treat ischemic stroke with better results than are currently available. 展开更多
关键词 bone marrow mesenchymal stem cell brain-derived neurotrophic factor CD31 microtubule associated protein 2 middle cerebral artery occlusion stroke transplantation vascular endothelial growth factor
下载PDF
Communication between bone marrow mesenchymal stem cells and multiple myeloma cells:Impact on disease progression 被引量:1
12
作者 Daniel García-Sánchez Alberto González-González +2 位作者 Ana Alfonso-Fernández Mónica Del Dujo-Gutiérrez Flor M Pérez-Campo 《World Journal of Stem Cells》 SCIE 2023年第5期421-437,共17页
Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,a... Multiple myeloma(MM)is a hematological malignancy characterized by the accumulation of immunoglobulin-secreting clonal plasma cells at the bone marrow(BM).The interaction between MM cells and the BM microenvironment,and specifically BM mesenchymal stem cells(BM-MSCs),has a key role in the pathophysiology of this disease.Multiple data support the idea that BM-MSCs not only enhance the proliferation and survival of MM cells but are also involved in the resistance of MM cells to certain drugs,aiding the progression of this hematological tumor.The relation of MM cells with the resident BM-MSCs is a two-way interaction.MM modulate the behavior of BM-MSCs altering their expression profile,proliferation rate,osteogenic potential,and expression of senescence markers.In turn,modified BM-MSCs can produce a set of cytokines that would modulate the BM microenvironment to favor disease progression.The interaction between MM cells and BM-MSCs can be mediated by the secretion of a variety of soluble factors and extracellular vesicles carrying microRNAs,long non-coding RNAs or other molecules.However,the communication between these two types of cells could also involve a direct physical interaction through adhesion molecules or tunneling nanotubes.Thus,understanding the way this communication works and developing strategies to interfere in the process,would preclude the expansion of the MM cells and might offer alternative treatments for this incurable disease. 展开更多
关键词 Multiple myeloma Mesenchymal stem cells Bone marrow microenvironment Soluble factors Extra-cellular vesicles cells adhesion molecules Tunnellingnanotubes
下载PDF
Inhibition of VEGF-A expression in hypoxia-exposed fetal retinal microvascular endothelial cells by exosomes derived from human umbilical cord mesenchymal stem cells
13
作者 JING LI WANWAN FAN +5 位作者 LILI HAO YONGSHENG LI GUOCHENG YU WEI SUN XIANQIONG LUO JINGXIANG ZHONG 《BIOCELL》 SCIE 2023年第11期2485-2494,共10页
Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of v... Objective:This study aimed to investigate the potential of human umbilical cord mesenchymal stem cell(hucMSC)-derived exosomes(hucMSC-Exos)in inhibiting hypoxia-induced cell hyper proliferation and overexpression of vascular endothelial growth factor A(VEGF-A)in immature human fetal retinal microvascular endothelial cells(hfRMECs).Methods:Exosomes were isolated from hucMSCs using cryogenic ultracentrifugation and characterized through various techniques,including transmission electron microscopy,nanoparticle tracking analysis,bicinchoninic acid assays,and western blotting.The hfRMECs were identified using von Willebrand factor(vWF)co-staining and divided into four groups:a control group cultured under normoxic condition,a hypoxic model group,a hypoxic group treated with low-concentration hucMSC-Exos(75μg/mL)and a hypoxic group treated with high-concentration hucMSC-Exos(100μg/mL).Cell viability and proliferation were assessed using Cell Counting Kit-8(CCK-8)assay and EdU(5-ethynyl-2′-deoxyuridine)assay respectively.Expression levels of VEGF-A were evaluated using RT-PCR,western blotting and immunofluorescence.Results:Hypoxia significantly increased hfRMECs’viability and proliferation by upregulating VEGF-A levels.The administration of hucMSC-Exos effectively reversed this response,with the high-concentration group exhibiting greater efficacy compared to the lowconcentration group.Conclusion:In conclusion,hucMSC-Exos can dose-dependently inhibit hypoxia-induced hyperproliferation and VEGF-A overexpression in immature fetal retinal microvascular endothelial cells. 展开更多
关键词 Mesenchymal stem cells EXOSOMES Immature fetal retinal vascular endothelial cells Vascular endothelial growth factor A HYPOXIA
下载PDF
How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells
14
作者 María Belén Novoa Díaz Pedro Carriere Claudia Gentili 《World Journal of Stem Cells》 SCIE 2023年第5期281-301,共21页
Colorectal cancer(CRC)remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics.It is well established that the appearance of distal ... Colorectal cancer(CRC)remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics.It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure.Nevertheless,in the last decades,CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells(CCSC)with features like tumor initiation capacity,self-renewal capacity,and acquired multidrug resistance.Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes.These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling.It is known that in the tumor niche,different cell types,structures,and biomolecules coexist and interact with cancer cells favoring cancer growth and development.Together,these components constitute the tumor microenvironment(TME).Most recently,researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa,collectively known as gut microbiota,on CRC.Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC.Since in the last decade,crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC,the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies. 展开更多
关键词 Colorectal cancer Colorectal cancer stem cells Tumor microenvironment factors Tumor stroma Gut microbiota Cancer progression
下载PDF
Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia 被引量:18
15
作者 Seung Song Jong-Tae Park +4 位作者 Joo Young Na Man-Seok Park Jeong-Kil Lee Min-Cheol Lee Hyung-Seok Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期912-918,共7页
Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relatio... Endogenous neural stem cells become "activated" after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible factor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chronological changes of neural stem cells by 5-bromo-2′-deoxyuridine(BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1α immunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-infarct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3–7 days. Nestin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neurons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and vascular endothelial growth factor after ischemia made up the microenvironment to increase the neuronal plasticity of activated endogenous neural stem cells. Moreover, neural precursor cells after large-scale cortical injury could be recruited from the cortex nearby infarct core and subventricular zone. 展开更多
关键词 nerve regeneration brain ischemia neural stem cell neural precursor cell hypoxia-inducible factor vascular endothelial growth factor MICROENVIRONMENT PHOTOTHROMBOSIS neural regeneration
下载PDF
Making a tooth:growth factors,transcription factors,and stem cells 被引量:36
16
作者 YanDingZHANG ZhiCHEN +2 位作者 YiQiangSONG ChaoLIU YiPingCHEN 《Cell Research》 SCIE CAS CSCD 2005年第5期301-316,共16页
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determina... Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regene- ration will provide fundamental knowledge for the realization of human tooth regeneration in the near future. 展开更多
关键词 tooth development transcription factor growth factor stem cells regeneration.
下载PDF
Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-Ⅰ 被引量:10
17
作者 Maryam Ayatollahi Masoud Soleimani +1 位作者 Seyed Ziaadin Tabei Maryam Kabir Salmani 《World Journal of Stem Cells》 SCIE CAS 2011年第12期113-121,共9页
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow... AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes. 展开更多
关键词 MESENCHYMAL stem cell DIFFERENTIATION HEPATOCYTE INSULIN-LIKE growth factor 1 Human
下载PDF
Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury 被引量:11
18
作者 方煌 王俊芳 陈安民 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第2期206-210,共5页
To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n=... To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubeeeo-modified Eagles medium (DMEM , Group Ⅰ ), MSCs (Group Ⅱ ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunoeytoehemieal staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunoeytoehemieal staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P〈0. 05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astroeytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF. 展开更多
关键词 spinal cord injury bone marrow mesenchymal stem cells nerve growth factor TRANSPLANTATION
下载PDF
Transplantation of vascular endothelial growth factor-modified neural stem/progenitor cells promotes the recovery of neurological function following hypoxic-ischemic brain damage 被引量:12
19
作者 Yue Yao Xiang-rong Zheng +4 位作者 Shan-shan Zhang Xia Wang Xiao-he Yu Jie-lu Tan Yu-jia Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1456-1463,共8页
Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling ... Neural stem/progenitor cell (NSC) transplantation has been shown to effectively improve neurological function in rats with hypoxic-isch- emic brain damage. Vascular endothelial growth factor (VEGF) is a signaling protein that stimulates angiogenesis and improves neural regeneration. We hypothesized that transplantation of VEGF-transfected NSCs would alleviate hypoxic-ischemic brain damage in neo- natal rats. We produced and transfected a recombinant lentiviral vector containing the VEGF165gene into cultured NSCs. The transfected NSCs were transplanted into the left sensorimotor cortex of rats 3 days after hypoxic-ischemic brain damage. Compared with the NSCs group, VEGF mRNA and protein expression levels were increased in the transgene NSCs group, and learning and memory abilities were significantly improved at 30 days. Furthermore, histopathological changes were alleviated in these animals. Our findings indicate that transplantation of VEGF-transfected NSCs may facilitate the recovery of neurological function, and that its therapeutic effectiveness is better than that of unmodified NSCs. 展开更多
关键词 nerve regeneration vascular endothelial growth factor TRANSFECTION neural stem/progenitor cells TRANSPLANTATION hypoxic-ischemicbrain damage cerebral cortex animal model NEUROPROTECTION neural regeneration
下载PDF
Effects of lateral ventricular transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene on cognition in a rat model of Alzheimer's disease 被引量:8
20
作者 Ping Zhang Gangyong Zhao +1 位作者 Xianjiang Kang Likai Su 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第4期245-250,共6页
In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in s... In the present study, transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene into the lateral ventricle of a rat model of Alzheimer's disease, resulted in significant attenuation of nerve cell damage in the hippocampal CA1 region. Furthermore, brain-derived neurotrophic factor and tyrosine kinase B mRNA and protein levels were significantly increased, and learning and memory were significantly improved. Results indicate that transplantation of bone marrow-derived mesenchymal stem cells modified with brain-derived neurotrophic factor gene can significantly improve cognitive function in a rat model of Alzheimer's disease, possibly by increasing the levels of brain-derived neurotrophic factor and tyrosine kinase B in the hippocampus. 展开更多
关键词 Alzheimer's disease bone marrow-derived mesenchymal stem cells brain-derived neurotrophic factor lateral ventricle electrotransfection neural regeneration
下载PDF
上一页 1 2 227 下一页 到第
使用帮助 返回顶部