“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health pro...“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.展开更多
BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of auto...BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area,whereas allogeneic or xenografts are even more limited by immune rejection.Tissue-engineered peripheral nerve scaffolds,with the morphology and structure of natural nerves and complex biological signals,hold the most promise as ideal peripheral nerve“replacements”.AIM To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method,and use human umbilical cord mesenchymal stem cells(hUCMSCs)as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.METHODS After obtaining sciatic nerves from New Zealand rabbits,an optimal acellular scaffold preparation scheme was established by mechanical separation,varying lyophilization cycles,and trypsin and DNase digestion at different times.The scaffolds were evaluated by hematoxylin and eosin(HE)and luxol fast blue(LFB)staining.The maximum load,durability,and elastic modulus of the acellular scaffolds were assessed using a universal material testing machine.The acellular scaffolds were implanted into the dorsal erector spinae muscle of SD rats and the scaffold degradation and systemic inflammatory reactions were observed at 3 days,1 week,3 weeks,and 6 weeks following surgery to determine the histocompatibility between xenografts.The effect of acellular scaffold extracts on fibroblast proliferation was assessed using an MTT assay to measure the cytotoxicity of the scaffold residual reagents.In addition,the umbilical cord from cesarean section fetuses was collected,and the Wharton’s jelly(WJ)was separated into culture cells and confirm the osteogenic and adipogenic differentiation of mesenchymal stem cells(MSCs)and hUC-MSCs.The cultured cells were induced to differentiate into Schwann cells by the antioxidant-growth factor induction method,and the differentiated cells and the myelinogenic properties were identified.RESULTS The experiments effectively decellularized the sciatic nerve of the New Zealand rabbits.After comparing the completed acellular scaffolds among the groups,the optimal decellularization preparation steps were established as follows:Mechanical separation of the epineurium,two cycles of lyophilization-rewarming,trypsin digestion for 5 hours,and DNase digestion for 10 hours.After HE staining,no residual nuclear components were evident on the scaffold,whereas the extracellular matrix remained intact.LFB staining showed a significant decrease in myelin sheath composition of the scaffold compared with that before preparation.Biomechanical testing revealed that the maximum tensile strength,elastic modulus,and durability of the acellular scaffold were reduced compared with normal peripheral nerves.Based on the histocompatibility test,the immune response of the recipient SD rats to the scaffold New Zealand rabbits began to decline3 weeks following surgery,and there was no significant rejection after 6 weeks.The MTT assay revealed that the acellular reagent extract had no obvious effects on cell proliferation.The cells were successfully isolated,cultured,and passaged from human umbilical cord WJ by MSC medium,and their ability to differentiate into Schwann-like cells was demonstrated by morphological and immunohistochemical identification.The differentiated cells could also myelinate in vitro.CONCLUSION The acellular peripheral nerve scaffold with complete cell removal and intact matrix may be prepared by combining lyophilization and enzyme digestion.The resulting scaffold exhibited good histocompatibility and low cytotoxicity.In addition,hUC-MSCs have the potential to differentiate into Schwann-like cells with myelinogenic ability following in vitro induction.展开更多
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist...BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.展开更多
Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving mul...Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.展开更多
Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI ...Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.展开更多
In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bo...In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.展开更多
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-d...Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e展开更多
Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous ...Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.展开更多
Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.Ho...Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells.展开更多
Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal d...Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments.In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.展开更多
Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and...Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury,increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.展开更多
Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers con...Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers containing either human umbilical cord mesenchymal stem cell (cell transplantation group)or saline(control group).At 8,12,16 and 20 weeks after cell implantation,the sciatic functional index was higher in the cell transplantation group compared with the control group.Furthermore,electrophysiological examination showed that threshold stimulus and maximum stimulus intensity gradually decreased while compound action potential amplitude gradually increased.Hematoxylin-eosin staining showed that regenerating nerve fibers were arranged in nerve tracts in the cell transplantation group and connective tissue between nerve tracts and amnion tissue reduced over time.Gastrocnemius muscle cell diameter,wet weight and restoration ratio were increased.These data indicate that transplanted human umbilical cord mesenchymal stem cells,using the amnion tube connection method,promote restoration of damaged sciatic nerves in rats.展开更多
The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural di...The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.展开更多
BACKGROUND: Schwann cells are the most commonly used cells for tissue-engineered nerves. However, autologous Schwann cells are of limited use in a clinical context, and allogeneic Schwann cells induce immunological r...BACKGROUND: Schwann cells are the most commonly used cells for tissue-engineered nerves. However, autologous Schwann cells are of limited use in a clinical context, and allogeneic Schwann cells induce immunological rejections. Cells that do not induce immunological rejections and that are relatively easy to acquire are urgently needed for transplantation. OBJECTIVE: To bridge sciatic nerve defects using tissue engineered nerves constructed with neural tissue-committed stem cells (NTCSCs) derived from bone marrow; to observe morphology and function of rat nerves following bridging; to determine the effect of autologous nerve transplantation, which serves as the gold standard for evaluating efficacy of tissue-engineered nerves. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed in the Anatomical Laboratory and Biomedical Institute of the Second Military Medical University of Chinese PLA between September 2004 and April 2006. MATERIALS: Five Sprague Dawley rats, aged 1 month and weighing 100-150 g, were used for cell culture. Sixty Sprague Dawley rats aged 3 months and weighing 220-250 g, were used to establish neurological defect models. Nestin, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), and S-100 antibodies were provided by Santa Cruz Biotechnology, Inc., USA. Acellular nerve grafts were derived from dogs. METHODS: All rats, each with 1-cm gap created in the right sciatic nerve, were randomly assigned to three groups. Each group comprised 20 rats. Autograft nerve transplantation group: the severed 1-cm length nerve segment was reverted, but with the two ends exchanged; the proximal segment was sutured to the distal sciatic nerve stump and the distal segment to the proximal stump. Blank nerve scaffold transplantation group: a 1-cm length acellular nerve graft was used to bridge the sciatic nerve gap. NTCSC engineered nerve transplantation group: a 1-cm length acellular nerve graft, in which NTCSCs were inoculated, was used to bridge the sciatic nerve gap. MAIN OUTCOME MEASURES: Following surgery, sciatic nerve functional index and electrophysiology functions were evaluated for nerve conduction function, including conduction latency, conduction velocity, and action potential peak. Horseradish peroxidase (HRP, 20%) was injected into the gastrocnemius muscle to retrogradely label the 1-4 and L5 nerve ganglions, as well as neurons in the anterior horn of the spinal cord, in the three groups. Positive expression of nestin, NSE, GFAP, and S-100 were determined using an immunofluorescence double-labeling method. RESULTS: NTCSCs differentiated into neuronal-like cells and glial-like cells within 12 weeks after NTCSC engineered nerve transplantation. HRP retrograde tracing displayed a large amount of HRP-labeled neurons in I-45 nerve ganglions, as well as the anterior horn of the spinal cord, in both the autograft nerve transplantation and the NTCSC engineered nerve transplantation groups. However, few HRP-labeled neurons were detected in the blank nerve scaffold transplantation group. Nerve bridges in the autograft nerve transplantation and NTCSC engineered nerve transplantation groups exhibited similar morphology to normal nerves. Neither fractures or broken nerve bridges nor neuromas were found after bridging the sciatic nerve gap with NTCSCs-inoculated acellular nerve graft, indicating repair. Conduction latency, action potential, and conduction velocity in the NTCSC engineered nerve transplantation group were identical to the autograft nerve transplantation group (P 〉 0.05), but significantly different from the blank nerve scaffold transplantation group (P 〈 0.05). CONCLUSION" NTCSC tissue-engineered nerves were able to repair injured nerves and facilitated restoration of nerve conduction function, similar to autograft nerve transplantation. "展开更多
Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Holl...Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair.Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.In this study,we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model.Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks.Nevertheless,the molecular assessment in the early regeneration phase(7,14,and 28 days)has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones.Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1,a growth factor that plays an important role in Schwann cell transdifferentiation.The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2,VEGF-A,BDNF,c-Jun,and ATF3.展开更多
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP...Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.展开更多
Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article revi...Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.展开更多
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen...Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.展开更多
BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) ...BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.展开更多
Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: d...Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell(uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.展开更多
基金supported by the Key Research and Development Project of Hubei Province of China,2022BCA028(to HC)。
文摘“Peripheral nerve injury”refers to damage or trauma affecting nerves outside the brain and spinal cord.Peripheral nerve injury results in movements or sensation impairments,and represents a serious public health problem.Although severed peripheral nerves have been effectively joined and various therapies have been offered,recovery of sensory or motor functions remains limited,and efficacious therapies for complete repair of a nerve injury remain elusive.The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function.Mesenchymal stem cells,as large living cells responsive to the environment,secrete various factors and exosomes.The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins,microRNA,and messenger RNA derived from parent mesenchymal stem cells.Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function,offering solutions to changes associated with cell-based therapies.Despite ongoing investigations,mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage.A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation.This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury,exploring the underlying mechanisms.Subsequently,it provides an overview of the current status of mesenchymal stem cell and exosomebased therapies in clinical trials,followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes.Finally,the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes,offering potential solutions and guiding future directions.
文摘BACKGROUND The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting;however,autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area,whereas allogeneic or xenografts are even more limited by immune rejection.Tissue-engineered peripheral nerve scaffolds,with the morphology and structure of natural nerves and complex biological signals,hold the most promise as ideal peripheral nerve“replacements”.AIM To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method,and use human umbilical cord mesenchymal stem cells(hUCMSCs)as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.METHODS After obtaining sciatic nerves from New Zealand rabbits,an optimal acellular scaffold preparation scheme was established by mechanical separation,varying lyophilization cycles,and trypsin and DNase digestion at different times.The scaffolds were evaluated by hematoxylin and eosin(HE)and luxol fast blue(LFB)staining.The maximum load,durability,and elastic modulus of the acellular scaffolds were assessed using a universal material testing machine.The acellular scaffolds were implanted into the dorsal erector spinae muscle of SD rats and the scaffold degradation and systemic inflammatory reactions were observed at 3 days,1 week,3 weeks,and 6 weeks following surgery to determine the histocompatibility between xenografts.The effect of acellular scaffold extracts on fibroblast proliferation was assessed using an MTT assay to measure the cytotoxicity of the scaffold residual reagents.In addition,the umbilical cord from cesarean section fetuses was collected,and the Wharton’s jelly(WJ)was separated into culture cells and confirm the osteogenic and adipogenic differentiation of mesenchymal stem cells(MSCs)and hUC-MSCs.The cultured cells were induced to differentiate into Schwann cells by the antioxidant-growth factor induction method,and the differentiated cells and the myelinogenic properties were identified.RESULTS The experiments effectively decellularized the sciatic nerve of the New Zealand rabbits.After comparing the completed acellular scaffolds among the groups,the optimal decellularization preparation steps were established as follows:Mechanical separation of the epineurium,two cycles of lyophilization-rewarming,trypsin digestion for 5 hours,and DNase digestion for 10 hours.After HE staining,no residual nuclear components were evident on the scaffold,whereas the extracellular matrix remained intact.LFB staining showed a significant decrease in myelin sheath composition of the scaffold compared with that before preparation.Biomechanical testing revealed that the maximum tensile strength,elastic modulus,and durability of the acellular scaffold were reduced compared with normal peripheral nerves.Based on the histocompatibility test,the immune response of the recipient SD rats to the scaffold New Zealand rabbits began to decline3 weeks following surgery,and there was no significant rejection after 6 weeks.The MTT assay revealed that the acellular reagent extract had no obvious effects on cell proliferation.The cells were successfully isolated,cultured,and passaged from human umbilical cord WJ by MSC medium,and their ability to differentiate into Schwann-like cells was demonstrated by morphological and immunohistochemical identification.The differentiated cells could also myelinate in vitro.CONCLUSION The acellular peripheral nerve scaffold with complete cell removal and intact matrix may be prepared by combining lyophilization and enzyme digestion.The resulting scaffold exhibited good histocompatibility and low cytotoxicity.In addition,hUC-MSCs have the potential to differentiate into Schwann-like cells with myelinogenic ability following in vitro induction.
基金approved by the medical ethics committee of the authors’institution(protocol number:56733164-203-E.5863).
文摘BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress.
文摘Unlike central nervous system injuries,peripheral nerve injuries(PNIs)are often characterized by more or less successful axonal regeneration.However,structural and functional recovery is a senile process involving multifaceted cellular and molecular processes.The contemporary treatment options are limited,with surgical intervention as the gold-standard method;however,each treatment option has its associated limitations,especially when the injury is severe with a large gap.Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI.The recent pilot study is a leap forward in the field,which is expected to pave the way for more enormous,systematic,and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach,in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
基金CAMS Innovation Fund for Medical Sciences,No.2022-I2M-C&T-B-034.
文摘Peripheral nerve injury(PNI)is a common neurological disorder and complete functional recovery is difficult to achieve.In recent years,bone marrow mesenchymal stem cells(BMSCs)have emerged as ideal seed cells for PNI treatment due to their strong differentiation potential and autologous trans-plantation ability.This review aims to summarize the molecular mechanisms by which BMSCs mediate nerve repair in PNI.The key mechanisms discussed include the differentiation of BMSCs into multiple types of nerve cells to promote repair of nerve injury.BMSCs also create a microenvironment suitable for neuronal survival and regeneration through the secretion of neurotrophic factors,extracellular matrix molecules,and adhesion molecules.Additionally,BMSCs release pro-angiogenic factors to promote the formation of new blood vessels.They modulate cytokine expression and regulate macrophage polarization,leading to immunomodulation.Furthermore,BMSCs synthesize and release proteins related to myelin sheath formation and axonal regeneration,thereby promoting neuronal repair and regeneration.Moreover,this review explores methods of applying BMSCs in PNI treatment,including direct cell trans-plantation into the injured neural tissue,implantation of BMSCs into nerve conduits providing support,and the application of genetically modified BMSCs,among others.These findings confirm the potential of BMSCs in treating PNI.However,with the development of this field,it is crucial to address issues related to BMSC therapy,including establishing standards for extracting,identifying,and cultivating BMSCs,as well as selecting application methods for BMSCs in PNI such as direct transplantation,tissue engineering,and genetic engineering.Addressing these issues will help translate current preclinical research results into clinical practice,providing new and effective treatment strategies for patients with PNI.
文摘In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchyrnal stem cells group. Results showed that at 8 weeks after bridging, sciatic functional index, triceps wet weight recovery rate, myelin thickness, and number of myelinated nerve fibers were significantly changed in the three groups. Variations were the largest in the acellular nerve allograft + brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells group compared with the other two groups. Experimental findings suggest that chemically extracted acellular nerve allograft combined nerve factor and mesenchymal stem cells can promote the restoration of sciatic nerve defects. The repair effect seen is better than the single application of acellular nerve allograft or acellular nerve allograft combined mesenchymal stem cell transplantation.
基金supported by a grant of the Seoul National University Dental Hospital,Republic of Korea,No.03-2010-0020
文摘Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv^rv nf P.n I^h-inillr^4 ~r^i~tit, n^r~e
基金supported by a grant of the Korea Healthcare Technology R&D Project,Ministry for Health,Welfare & Family Affairs,Republic of Korea,No.A101578
文摘Human periodontal ligament stem cells are easily accessible and can differentiate into Schwann cells. We hypothesized that human periodontal ligament stem cells can be used as an alternative source for the autologous Schwann cells in promoting the regeneration of injured peripheral nerve. To validate this hypothesis, human periodontal ligament stem cells (1 × 106) were injected into the crush-injured left mental nerve in rats. Simultaneously, autologous Schwann cells (1 × 106) and PBS were also injected as controls. Real-time reverse transcriptase polymerase chain reaction showed that at 5 days after injection, mRNA expression of low affinity nerve growth factor receptor was sig-nificantaly increased in the left trigeminal ganglion of rats with mental nerve injury. Sensory tests, histomorphometric evaluation and retrograde labeling demonstrated that at 2 and 4 weeks after in-jection, sensory function was significantly improved, the numbers of retrograde labeled sensory neurons and myelinated axons were significantly increased, and human periodontal ligament stem cells and autologous Schwann cells exhibited similar therapeutic effects. These findings suggest that transplantation of human periodontal ligament stem cells show a potential value in repair of mental nerve injury.
基金Supported by Science&Technology Department of Sichuan Province(No.2021YFS0214).
文摘Glaucoma is a common and complex neurodegenerative disease characterized by progressive loss of retinal ganglion cells(RGCs)and axons.Currently,there is no effective method to address the cause of RGCs degeneration.However,studies on neuroprotective strategies for optic neuropathy have increased in recent years.Cell replacement and neuroprotection are major strategies for treating glaucoma and optic neuropathy.Regenerative medicine research into the repair of optic nerve damage using stem cells has Received considerable attention.Stem cells possess the potential for multidirectional differentiation abilities and are capable of producing RGCfriendly microenvironments through paracrine effects.This article reviews a thorough researches of recent advances and approaches in stem cell repair of optic nerve injury,raising the controversies and unresolved issues surrounding the future of stem cells.
基金supported by a grant of the Korea Health Technology R & D Project through the Korea Health Industry Development Institute(KHIDI)funded by the Ministry of Health&Welfare,Republic of Korea(grant number:HI15C1535)
文摘Bone marrow-derived mesenchymal stem cells (BMSCs) have been shown to promote the regeneration of injured peripheral nerves. Pulsed electromagnetic field (PEMF) reportedly promotes the proliferation and neuronal differentiation of BMSCs. Low-frequency PEMF can induce the neuronal differentiation of BMSCs in the absence of nerve growth factors. This study was designed to investigate the effects of low-frequency PEMF pretreatment on the proliferation and function of BMSCs and the effects of low-frequency PEMF pre-treated BMSCs on the regeneration of injured peripheral nerve using in vitro and in vivo experiments.In in vitro experiments, quantitative DNA analysis was performed to determine the proliferation of BMSCs, and reverse transcription-polymerase chain reaction was performed to detect S100 (Schwann cell marker), glial fibrillary acidic protein (astrocyte marker), and brain-derived neurotrophic factor and nerve growth factor (neurotrophic factors) mRNA expression. In the in vivo experiments, rat models of crush-injured mental nerve established using clamp method were randomly injected with low-frequency PEMF pretreated BMSCs, unpretreated BMSCs or PBS at the injury site (1 × 106 cells). DiI-labeled BMSCs injected at the injury site were counted under the fluorescence microscope to determine cell survival. One or two weeks after cell injection, functional recovery of the injured nerve was assessed using the sensory test with von Frey filaments. Two weeks after cell injection, axonal regeneration was evaluated using histomorphometric analysis and retrograde labeling of trigeminal ganglion neurons. In vitro experiment results revealed that low-frequency PEMF pretreated BMSCs proliferated faster and had greater mRNA expression of growth factors than unpretreated BMSCs. In vivo experiment results revealed that compared with injection of unpretreated BMSCs, injection of low-frequency PEMF pretreated BMSCs led to higher myelinated axon count and axon density and more DiI-labeled neurons in the trigeminal ganglia, contributing to rapider functional recovery of injured mental nerve. These findings suggest that low-frequency PEMF pretreatment is a promising approach to enhance the efficacy of cell therapy for peripheral nerve injury repair.
基金supported by Brazilian grants from Fundacao de Amparo à Pesquisa do Estado de Sao Paulo(FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)CAPES
文摘Studies have confirmed that bone marrow-derived mesenchymal stem cells (MSCs) can be used for treatment of several nervous system diseases. However, isolation of bone marrow-derived MSCs (BMSCs) is an invasive and painful process and the yield is very low. Therefore, there is a need to search for other alterative stem cell sources. Adipose-derived MSCs (ADSCs) have phenotypic and gene expression profiles similar to those of BMSCs. The production of ADSCs is greater than that of BMSCs, and ADSCs proliferate faster than BMSCs. To compare the effects of venous grafts containing BMSCs or ADSCs on sciatic nerve injury, in this study, rats were randomly divided into four groups: sham (only sciatic nerve exposed), Matrigel (MG; sciatic nerve injury + intravenous transplantation of MG vehicle), ADSCs (sciatic nerve injury + intravenous MG containing ADSCs), and BMSCs (sciatic nerve injury + intravenous MG containing BMSCs) groups. Sciatic functional index was calculated to evaluate the function of injured sciatic nerve. Morphologic characteristics of nerves distal to the lesion were observed by toluidine blue staining. Spinal motor neurons labeled with Fluoro-Gold were quantitatively assessed. Compared with sham-operated rats, sciatic functional index was lower, the density of small-diameter fibers was significantly increased, and the number of motor neurons significantly decreased in rats with sciatic nerve injury. Neither ADSCs nor BMSCs significantly improved the sciatic nerve function of rats with sciatic nerve injury,increased fiber density, fiber diameters, axonal diameters, myelin sheath thickness, and G ratios (axonal diameter/fiber diameter ratios) in the sciatic nerve distal to the lesion site. There was no significant difference in the number of spinal motor neurons among ADSCs, BMSCs and MG groups. These results suggest that neither BMSCs nor ADSCs provide satisfactory results for peripheral nerve repair when using MG as the conductor for engraftment.
基金financially sponsored by the Natural Science Foundation of Liaoning Province,No.20102138
文摘Human umbilical cord mesenchymal stem cells,incorporated into an amnion carrier tubes,were assessed for nerve regeneration potential in a rat nerve defect model.Damaged nerves were exposed to human amnion carriers containing either human umbilical cord mesenchymal stem cell (cell transplantation group)or saline(control group).At 8,12,16 and 20 weeks after cell implantation,the sciatic functional index was higher in the cell transplantation group compared with the control group.Furthermore,electrophysiological examination showed that threshold stimulus and maximum stimulus intensity gradually decreased while compound action potential amplitude gradually increased.Hematoxylin-eosin staining showed that regenerating nerve fibers were arranged in nerve tracts in the cell transplantation group and connective tissue between nerve tracts and amnion tissue reduced over time.Gastrocnemius muscle cell diameter,wet weight and restoration ratio were increased.These data indicate that transplanted human umbilical cord mesenchymal stem cells,using the amnion tube connection method,promote restoration of damaged sciatic nerves in rats.
基金supported by a grant from Construction Project of Gansu Provincial Animal Cell Engineering Center,No.0808NTGA013Program for Innovative Research Team in University of Ministry of Education of China,No.IRT13091
文摘The purpose of this study was to assess fetal bovine acellular dermal matrix as a scaffold for supporting the differentiation of bone marrow mesenchymal stem cells into neural cells fol-lowing induction with neural differentiation medium. We performed long-term, continuous observation of cell morphology, growth, differentiation, and neuronal development using several microscopy techniques in conjunction with immunohistochemistry. We examined speciifc neu-ronal proteins and Nissl bodies involved in the differentiation process in order to determine the neuronal differentiation of bone marrow mesenchymal stem cells. The results show that bone marrow mesenchymal stem cells that differentiate on fetal bovine acellular dermal matrix display neuronal morphology with unipolar and bi/multipolar neurite elongations that express neuro-nal-speciifc proteins, includingβIII tubulin. The bone marrow mesenchymal stem cells grown on fetal bovine acellular dermal matrix and induced for long periods of time with neural differen-tiation medium differentiated into a multilayered neural network-like structure with long nerve ifbers that was composed of several parallel microifbers and neuronal cells, forming a complete neural circuit with dendrite-dendrite to axon-dendrite to dendrite-axon synapses. In addition, growth cones with filopodia were observed using scanning electron microscopy. Paraffin sec-tioning showed differentiated bone marrow mesenchymal stem cells with the typical features of neuronal phenotype, such as a large, round nucleus and a cytoplasm full of Nissl bodies. The data suggest that the biological scaffold fetal bovine acellular dermal matrix is capable of supporting human bone marrow mesenchymal stem cell differentiation into functional neurons and the subsequent formation of tissue engineered nerve.
基金Shanghai Municipal Natural Science Foundation,No.06ZR14108
文摘BACKGROUND: Schwann cells are the most commonly used cells for tissue-engineered nerves. However, autologous Schwann cells are of limited use in a clinical context, and allogeneic Schwann cells induce immunological rejections. Cells that do not induce immunological rejections and that are relatively easy to acquire are urgently needed for transplantation. OBJECTIVE: To bridge sciatic nerve defects using tissue engineered nerves constructed with neural tissue-committed stem cells (NTCSCs) derived from bone marrow; to observe morphology and function of rat nerves following bridging; to determine the effect of autologous nerve transplantation, which serves as the gold standard for evaluating efficacy of tissue-engineered nerves. DESIGN, TIME AND SETTING: This randomized, controlled, animal experiment was performed in the Anatomical Laboratory and Biomedical Institute of the Second Military Medical University of Chinese PLA between September 2004 and April 2006. MATERIALS: Five Sprague Dawley rats, aged 1 month and weighing 100-150 g, were used for cell culture. Sixty Sprague Dawley rats aged 3 months and weighing 220-250 g, were used to establish neurological defect models. Nestin, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), and S-100 antibodies were provided by Santa Cruz Biotechnology, Inc., USA. Acellular nerve grafts were derived from dogs. METHODS: All rats, each with 1-cm gap created in the right sciatic nerve, were randomly assigned to three groups. Each group comprised 20 rats. Autograft nerve transplantation group: the severed 1-cm length nerve segment was reverted, but with the two ends exchanged; the proximal segment was sutured to the distal sciatic nerve stump and the distal segment to the proximal stump. Blank nerve scaffold transplantation group: a 1-cm length acellular nerve graft was used to bridge the sciatic nerve gap. NTCSC engineered nerve transplantation group: a 1-cm length acellular nerve graft, in which NTCSCs were inoculated, was used to bridge the sciatic nerve gap. MAIN OUTCOME MEASURES: Following surgery, sciatic nerve functional index and electrophysiology functions were evaluated for nerve conduction function, including conduction latency, conduction velocity, and action potential peak. Horseradish peroxidase (HRP, 20%) was injected into the gastrocnemius muscle to retrogradely label the 1-4 and L5 nerve ganglions, as well as neurons in the anterior horn of the spinal cord, in the three groups. Positive expression of nestin, NSE, GFAP, and S-100 were determined using an immunofluorescence double-labeling method. RESULTS: NTCSCs differentiated into neuronal-like cells and glial-like cells within 12 weeks after NTCSC engineered nerve transplantation. HRP retrograde tracing displayed a large amount of HRP-labeled neurons in I-45 nerve ganglions, as well as the anterior horn of the spinal cord, in both the autograft nerve transplantation and the NTCSC engineered nerve transplantation groups. However, few HRP-labeled neurons were detected in the blank nerve scaffold transplantation group. Nerve bridges in the autograft nerve transplantation and NTCSC engineered nerve transplantation groups exhibited similar morphology to normal nerves. Neither fractures or broken nerve bridges nor neuromas were found after bridging the sciatic nerve gap with NTCSCs-inoculated acellular nerve graft, indicating repair. Conduction latency, action potential, and conduction velocity in the NTCSC engineered nerve transplantation group were identical to the autograft nerve transplantation group (P 〉 0.05), but significantly different from the blank nerve scaffold transplantation group (P 〈 0.05). CONCLUSION" NTCSC tissue-engineered nerves were able to repair injured nerves and facilitated restoration of nerve conduction function, similar to autograft nerve transplantation. "
基金funded by the Spanish “Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica, Ministerio de Economía y Competitividad (Instituto de Salud Carlos Ⅲ),grants Nos. FIS PI14-1343, FIS PI17-0393, and FIS PI20-0318 co-financed by the “Fondo Europeo de Desarrollo Regional ERDF-FEDER European Union”grant No. P18-RT-5059 by “Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020),Consejería de Transformación Económica, Industria, Conocimiento y Universidades, Junta de Andalucía, España”grant No. A-CTS-498-UGR18 by “Programa Operativo FEDER Andalucía 2014–2020, Universidad de Granada, Junta de Andalucía, España”, co-funded by ERDF-FEDER, the European Union (all to VC)
文摘Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair.Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.In this study,we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model.Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks.Nevertheless,the molecular assessment in the early regeneration phase(7,14,and 28 days)has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones.Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1,a growth factor that plays an important role in Schwann cell transdifferentiation.The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2,VEGF-A,BDNF,c-Jun,and ATF3.
基金Supported by Wuhan University of Science and Technology Startup Fund(Chu Tian Scholars Program),No.XZ2020024Open Laboratory Fund from Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration,No.2022kqhm005Hubei Provincial Health and Health Commission Research Project,No.WJ2023M121。
文摘Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
基金supported by the Major State Basic Research and Development Program of China(973 Program),No.2014CB542201the National Key Research and Development Program of China,No.2016YFC1101601,2017YFA0104702+2 种基金the Natural Science Foundation of Beijing of China,No.7172202a grant from the 13th Five-Year Plan Period of People’s Liberation Army of China,No.BWS13C029-5a grant from the Science and Technology Project of Beijing of China,No.Z161100005016059
文摘Currently, researchers are using neural stem cell transplantation to promote regeneration after peripheral nerve injury, as neural stem cells play an important role in peripheral nerve injury repair. This article reviews recent research progress of the role of neural stem cells in the repair of peripheral nerve injury. Neural stem cells can not only differentiate into neurons, astrocytes and oligodendrocytes, but can also differentiate into Schwann-like cells, which promote neurite outgrowth around the injury. Transplanted neural stem cells can differentiate into motor neurons that innervate muscles and promote the recovery of neurological function. To promote the repair of peripheral nerve injury, neural stem cells secrete various neurotrophic factors, including brain-derived neurotrophic factor, fibroblast growth factor, nerve growth factor, insulin-like growth factor and hepatocyte growth factor. In addition, neural stem cells also promote regeneration of the axonal myelin sheath, angiogenesis, and immune regulation. It can be concluded that neural stem cells promote the repair of peripheral nerve injury through a variety of ways.
基金supported by the National Natural Science Foundation of China,No.31100696,31170946a grant from the National High Technology Research and Development Program of China(863 Program),No.2012AA020502+1 种基金a grant from the National Program on Key Basic Research Project of China(973 Program),No.2014CB542201a grant from Beijing Metropolis Beijing Nova Program,No.2011115
文摘Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.
基金the Korea Health R&D Project Granted by Ministry of Health and Welfare Republic of Korea, No. A080863
文摘BACKGROUND: Mesenchymal stem cells (MSCs) appear to be a good alternative to Schwann cells in the treatment of peripheral nerve injury. Fetal stem cells, like umbilical cord blood (UCB) and umbilical cord (UC) stem cells, have several advantages over adult stem cells. OBJECTIVE: To assess the effects of UC-derived MSCs (UCMSCs) and UCB-derived MSCs (UCBMSCs) in repair of sciatic nerve defects. DESIGN, TIME AND SETTING: A randomized controlled animal experiment was performed at the laboratory of Department of Oral and Maxillofacial Surgery, Seoul National University Dental Hospital, from July to December 2009. MATERIALS: UCMSCs were provided by the Research Institute of Biotechnology, Dongguk University. UCBMSCs were provided by the Laboratory of Stem Cells and Tumor Biology, College of Veterinary Medicine, Seoul National University. Dulbecco's modified Eagle's medium (DMEM) was purchased from Gibco-BRL, USA. METHODS: Seven-week-old Sprague-Dawley rats were randomly and evenly divided into three groups: DMEM, UCBMSCs, and UCMSCs. A 10-mm defect in the left sciatic nerve was constructed in all rats. DMEM (15 μL) containing 1×10^6 UCBMSCs or UCMSCs was injected into the gap between nerve stumps, with the surrounding epineurium as a natural conduit. For the DMEM group, simple DMEM was injected. MAIN OUTCOME MEASURES: At 7 weeks after sciatic nerve dissection, dorsal root ganglia neurons were labeled by fluorogold retrograde labeling. At 8 weeks, electrophysiology and histomorphometry were performed. At 2, 4, 6, and 8 weeks after surgery, sciatic nerve function was evaluated using gait analysis. RESULTS: The UCBMSCs group and the UCMSCs group exhibited similar sciatic nerve function and electrophysiological indices, which were better than the DMEM group, as measured by gait analysis (P 〈 0.05). Fluorogold retrograde labeling of sciatic nerve revealed that the UCBMSCs group demonstrated a higher number of labeled neurons; however, the differences were not significant. Histomorphometric indices were similar in the UCBMSCs and UCMSCs groups, and total axon counts, particularly axon density (P 〈 0.05), were significantly greater in the UCBMSCs and UCMSCs groups than in the DMEM group. CONCLUSION: Transplanting either UCBMSCs or UCMSCs into axotomized sciatic nerves could accelerate and promote sciatic nerve regeneration over 8 weeks. Both treatments had similar effects on nerve regeneration.
基金supported by the Summer Research Funding of Medical Student Research Fellowships at Dartmouth Geisel School of Medicine to RZ
文摘Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell(uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.