Objective:To investigate the influence of electroacupuncture(EA) combined with repetitive transcranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral ischemia...Objective:To investigate the influence of electroacupuncture(EA) combined with repetitive transcranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral ischemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury.Method:The model of transient focal ischemia was produced by occlusion of middle cerebral artery.Seventy-five Wistar rats were randomly divided into normal group,model group,EA group,rTMS group and EA +rTMS group.The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively.Meanwhile,Western blotting was used to observe the number of nestin expression positive cells.Result:Nestin-positive cells were found in cortex,subgranular zone(SGZ),subventricular zone(SVZ) of the ipsilateral side at different time points after cerebral ischemia.The number of nestin-positive cells peaked at the 7th d,began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group(P< 0.05),then almost reached normal at the 28th d.The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group(P<0.01,P<0.05).These effects were most obvious in EA +rTMS group compared with the EA and rTMS group(P<0.05).Conclusion:EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia,which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.展开更多
Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the...Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia.However,the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear.Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats.Ilexonin A(20,40 or 80 mg/kg)was administered immediately after ischemia/reperfusion.The astrocyte marker glial fibrillary acidic protein,microglia marker Iba-1,neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay.Expression levels of tumor necrosis factor-αand interleukin 1βwere determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue.Astrocytes were activated immediately in progressively increasing numbers from 1,3,to 7 days post-ischemia/reperfusion.The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A.Microglial cells remained quiescent after ischemia/reperfusion,but became activated after treatment with ilexonin A.Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-αand interleukin 1βin the hippocampus post-ischemia/reperfusion.The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion,probably through regulating astrocytes and microglia activation,promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors.This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital,China.展开更多
Objective Ependymal cells are thought to be the primary source of neural stem cells in the adult central nervous system. The purpose of this study is to examine spatial and temporal profiles of ependymal cell prolife...Objective Ependymal cells are thought to be the primary source of neural stem cells in the adult central nervous system. The purpose of this study is to examine spatial and temporal profiles of ependymal cell proliferation and migration after focal cerebral ischemia. Methods Eighty male Sprague Dawley rats underwent permanent middle cerebral artery occlusion after injection of 10 μL of 0.2% Dil into the lateral ventricle. Rats were sacrificed and brain sections were acquired for pathological evaluation and laser confocal imaging at day 1,3,7,11,14,21 and 28 after ischemia. Results The density of Dil-labeled cells in the ischemic ipsilateral subventricular zone was significantly higher than that in the control group and these labeled cells dispersed in the ischemic ipsilateral subventricular zone and/or were located in ependyma from day 1 to 11. In the ischemic ipsilateral cortex, some Dil-labeled cells occurred in peri-infarction and infarction of parietal region at day14 and peaked at day 21 when some Dil-labeled cell nodules were found in this region. During postischemic day 14-28, a significant decrease in labeled cell density in the ischemic ipsilateral subventricular zone was coincident with a significant increase in labeled cells density in the cortex (peri-infarction and infarction). Conclusion The results indicate that ependymal cells proliferate and migrate after focal cerebral ischemia in the adult rat brain.展开更多
Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in ...Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen Neu N, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ? anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.展开更多
基金Supported by the National Nature Science Foundation of China(No.30672216)Project of Wuhan Hygiene Bureau(No.WX08A01,No.WZ08B02)
文摘Objective:To investigate the influence of electroacupuncture(EA) combined with repetitive transcranial magnetic stimulation(rTMS) on the temporal profile of nestin expression after induction of focal cerebral ischemia in adult rats and to explore the mechanism of EA combined with rTMS in treating ischemic brain injury.Method:The model of transient focal ischemia was produced by occlusion of middle cerebral artery.Seventy-five Wistar rats were randomly divided into normal group,model group,EA group,rTMS group and EA +rTMS group.The neurologic impairment rating and ability of learning and memory were observed at the 7th、14th and 28th d after infarction respectively.Meanwhile,Western blotting was used to observe the number of nestin expression positive cells.Result:Nestin-positive cells were found in cortex,subgranular zone(SGZ),subventricular zone(SVZ) of the ipsilateral side at different time points after cerebral ischemia.The number of nestin-positive cells peaked at the 7th d,began to decrease at the 14th d and was significantly higher in EA+rTMS group than that in model group(P< 0.05),then almost reached normal at the 28th d.The improvement of neural motor function deficits as well as the indexes of learning and memory were more obvious in EA+rTMS group compared with model group(P<0.01,P<0.05).These effects were most obvious in EA +rTMS group compared with the EA and rTMS group(P<0.05).Conclusion:EA and rTMS possess the potency of building up and can increase the number of nestin-positive cells in some brain regions after focal cerebral ischemia,which might be one of the important mechanisms of EA combined with rTMS in treating ischemia brain injury.
基金supported by the Natural Science Foundation of Fujian Province of China,No.2014J01327the Program for New Century Excellent Talents in Colleges and Universities of Fujian Province of China,No.NCETFJ-0704the Professorial Academic Development Foundation of Fujian Medical University of China,No.JS09014(all to GYZ)
文摘Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia.However,the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear.Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats.Ilexonin A(20,40 or 80 mg/kg)was administered immediately after ischemia/reperfusion.The astrocyte marker glial fibrillary acidic protein,microglia marker Iba-1,neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay.Expression levels of tumor necrosis factor-αand interleukin 1βwere determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue.Astrocytes were activated immediately in progressively increasing numbers from 1,3,to 7 days post-ischemia/reperfusion.The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A.Microglial cells remained quiescent after ischemia/reperfusion,but became activated after treatment with ilexonin A.Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-αand interleukin 1βin the hippocampus post-ischemia/reperfusion.The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion,probably through regulating astrocytes and microglia activation,promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors.This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital,China.
文摘Objective Ependymal cells are thought to be the primary source of neural stem cells in the adult central nervous system. The purpose of this study is to examine spatial and temporal profiles of ependymal cell proliferation and migration after focal cerebral ischemia. Methods Eighty male Sprague Dawley rats underwent permanent middle cerebral artery occlusion after injection of 10 μL of 0.2% Dil into the lateral ventricle. Rats were sacrificed and brain sections were acquired for pathological evaluation and laser confocal imaging at day 1,3,7,11,14,21 and 28 after ischemia. Results The density of Dil-labeled cells in the ischemic ipsilateral subventricular zone was significantly higher than that in the control group and these labeled cells dispersed in the ischemic ipsilateral subventricular zone and/or were located in ependyma from day 1 to 11. In the ischemic ipsilateral cortex, some Dil-labeled cells occurred in peri-infarction and infarction of parietal region at day14 and peaked at day 21 when some Dil-labeled cell nodules were found in this region. During postischemic day 14-28, a significant decrease in labeled cell density in the ischemic ipsilateral subventricular zone was coincident with a significant increase in labeled cells density in the cortex (peri-infarction and infarction). Conclusion The results indicate that ependymal cells proliferate and migrate after focal cerebral ischemia in the adult rat brain.
基金supported by the Korea Health Technology R&D Project,Ministry of Health & Welfare(HI12C0381),Republic of Korea
文摘Transplantation of human neural stem cells into the dentate gyrus or ventricle of rodents has been reportedly to enhance neurogenesis. In this study, we examined endogenous stem cell proliferation and angiogenesis in the ischemic rat brain after the transplantation of human neural stem cells. Focal cerebral ischemia in the rat brain was induced by middle cerebral artery occlusion. Human neural stem cells were transplanted into the subventricular zone. The behavioral performance of human neural stem cells-treated ischemic rats was significantly improved and cerebral infarct volumes were reduced compared to those in untreated animals. Numerous transplanted human neural stem cells were alive and preferentially localized to the ipsilateral ischemic hemisphere. Furthermore, 5-bromo-2′-deoxyuridine-labeled endogenous neural stem cells were observed in the subventricular zone and hippocampus, where they differentiated into cells immunoreactive for the neural markers doublecortin, neuronal nuclear antigen Neu N, and astrocyte marker glial fibrillary acidic protein in human neural stem cells-treated rats, but not in the untreated ischemic animals. The number of 5-bromo-2′-deoxyuridine-positive ? anti-von Willebrand factor-positive proliferating endothelial cells was higher in the ischemic boundary zone of human neural stem cells-treated rats than in controls. Finally, transplantation of human neural stem cells in the brains of rats with focal cerebral ischemia promoted the proliferation of endogenous neural stem cells and their differentiation into mature neural-like cells, and enhanced angiogenesis. This study provides valuable insights into the effect of human neural stem cell transplantation on focal cerebral ischemia, which can be applied to the development of an effective therapy for stroke.