Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtai...Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
The imaging and target detection methods for stepped frequency signal based on the wavelet transform and its power spectrum are investigated. Not only an imaging and target detection algorithm for stepped frequency si...The imaging and target detection methods for stepped frequency signal based on the wavelet transform and its power spectrum are investigated. Not only an imaging and target detection algorithm for stepped frequency signal based on the wavelet transform, but also its respective power spectrum are proposed. The multisampling property of stepped frequency signal is studied and wavelet transform is well suited for analyzing the signal. After multisampling property of stepped frequency signal being studied, it is shown that the wavelet transform is appropriate to analyze the signal. Based on the theory, the wavelet power spectrum analysis is applied to obtain the target range profile and the binary wavelet transform is used to perform target detection. To determine a suitable wavelet scaling for imaging of range profile's MMW radar, the distance resolution ΔR technique is proposed. The effectiveness of this new method is evaluated using simulated noisy radar signal. Results show that the proposed method can bring out the exactness and low computational complexity of this method.展开更多
In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is lar...In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.展开更多
Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wa...Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.展开更多
The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolut...The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.展开更多
A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This me...A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.展开更多
Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and hig...Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and high resolution ranging within a single dwell in a high pulse repetition frequency (HPRF) mode. This paper analyzes in detail the design principle of the HPRF stepped frequency radar system, the solution to its ambiguity issue, as well as its signal processing method. Both theoretical analysis and simulation results demonstrate that the proposed radar scheme can work independently to solve the problem of motion compensation, and is therefore highly applicable to many new types of radar.展开更多
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar...Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.展开更多
文摘Most operating radar systems don′t have sufficient frequency bandwidth to produce high range resolution(HRR) profile of a target. But we can use stepped frequency waveform in a narrow band coherent radar to obtain the HRR profile of a target. For moving targets which are of great importance in practical radar usage, autofocusing,i.e. phase correction, is a necessary and critical step of the synthetic HRR processing. The purpose of autofocusing is to remove the radial motion effect of the target from radar echoes, and only reserve the stepped frequency effect which is the basis of synthetic HRR capability. We investigate two autofocusing approaches for synthetic HRR radars using stepped frequency waveform in this paper. The first is motion fitting method. This method depends on a certain parametric model, and is computationally expensive. Then we propose the iterative dominant scatterer method. It is robust, non parametric and simple in computation in comparison with the motion fitting method. Experimental results based on data acquired by using a metallised scale model B 52 in a microwave anechoic chamber reveal the validity and effectiveness of the method.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
文摘The imaging and target detection methods for stepped frequency signal based on the wavelet transform and its power spectrum are investigated. Not only an imaging and target detection algorithm for stepped frequency signal based on the wavelet transform, but also its respective power spectrum are proposed. The multisampling property of stepped frequency signal is studied and wavelet transform is well suited for analyzing the signal. After multisampling property of stepped frequency signal being studied, it is shown that the wavelet transform is appropriate to analyze the signal. Based on the theory, the wavelet power spectrum analysis is applied to obtain the target range profile and the binary wavelet transform is used to perform target detection. To determine a suitable wavelet scaling for imaging of range profile's MMW radar, the distance resolution ΔR technique is proposed. The effectiveness of this new method is evaluated using simulated noisy radar signal. Results show that the proposed method can bring out the exactness and low computational complexity of this method.
文摘In the high speed target environment,there exists serious Doppler effect in the low pulse repetition frequency(LPRF) modulated frequency stepped frequency(MFSF) radar signal.The velocity range of the target is large and the velocity is high ambiguous,so the single method is difficult to satisfy the velocity measurement requirement.For this problem,a novel method is presented,it is a combination of cross-correlation inner frame velocity measurement and range-Doppler coupling velocity measurement.The cross-correlation inner frame method,overcoming the low Doppler tolerance of the cross-correlation between frames,can obtain the coarse velocity of the high speed target,and then the precision velocity can be obtained with the range-Doppler coupling method.The simulation results confirm the method is effective,and also it is well real-time and easy to the project application.
文摘Aim To study the influence of radar-target relative speed on frequency MMW high-resolution ore-dimension distance profile and the compensation for it. Methods Based on the distance travelled by the electromagnetic wave, analyses were made for the compensation algorithm and the expression of the inverse FFT base distance was given.The relative importance of different compensation terms was studied in great detail. The concept of searching compensation was put forward. Results and Condclusion Dcm-△Dvimis the be distance of inverse FFT transformation, the effect caused by the distance △Dim on one-dimension profile is negligible, and the effect caused by the distance Dvim should not be neglected and must be compensated.
文摘The principle and method of both radar target imaging and velocity measurement simultaneously based on step frequency waveforms is presented. Velocity compensation is necessary in order to obtain the good High resolution range profile since this waveform is greatly sensitive to the Doppler shift. The velocity measurement performance of the four styles is analyzed with two pulse trains consisted of positive and negative step frequency waveforms. The velocity of targets can be estimated first coarsely by using the pulse trains with positive-positive step frequency combination, and then fine by positive-negative combination. Simulation results indicate that the method can accomplish the accurate estimation of the velocity with efficient computation and good anti-noise performance and obtain the good HRRP simultaneously.
基金supported by the National Natural Science Foundation of China(6112010600461225005)
文摘A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.
基金Supported by the fund of National Defense Industry Innovative Team
文摘Stepped frequency radar is a well known scheme to generate high range resolution profile (HRRP) of targets. Through appropriate radar parameter design, the radar enables both unambiguous velocity measurement and high resolution ranging within a single dwell in a high pulse repetition frequency (HPRF) mode. This paper analyzes in detail the design principle of the HPRF stepped frequency radar system, the solution to its ambiguity issue, as well as its signal processing method. Both theoretical analysis and simulation results demonstrate that the proposed radar scheme can work independently to solve the problem of motion compensation, and is therefore highly applicable to many new types of radar.
基金Project supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40561)the Scientific Research Program of National University of Defense Technology,China(No.ZK22-46)the National Natural Science Foundation of China(Nos.61890542,62001481,and 62071475)。
文摘Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.