'Stepwise-coupling polymerization' (SCP) is a very useful approach for preparing microstructure-controllable ordered network polymers, including soluble one-dimensional ladderlike polymers (LP) and tubular pol...'Stepwise-coupling polymerization' (SCP) is a very useful approach for preparing microstructure-controllable ordered network polymers, including soluble one-dimensional ladderlike polymers (LP) and tubular polymers (TP), and two-dimensional sieve-plate polymers. The novel reactive LPs are important precursors of micro-structure controllable polymers such as 'fishbone-' or 'rowboat-' like mesomorphic polymers and their metal complexes as well as tubular polymers (TPs). They are full of great potential for use as advanced materials.展开更多
Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue lig...Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue light after beating at 150 ℃ in air for 24 h, no red-shifted emission was observed by fluorescence spectroscopy.展开更多
Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were charact...Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were characterized by FT-IR, ^1H NMR, ^13C NMR, UV-Vis and fluorescence spectroscopy. The region-regular structure of the polymer linking at 2, 7'-position on the fluorene moieties was obtained. The FT-IR spectra of the polymers showed fluorenone vibration. The fluorescence spectra of the solid thin film of the polymers displayed green light-emitting, which was emitted from fluorenone moieties produced in the polymerization process.展开更多
The oxidative coupling polymerization of p alkoxyphenols with Mn(acac)2ethylenediamine catalysts was carried out. The polymerization of pmethoxyphenol with the manganese(II) acetylacetonate [Mn(acac)2]N,N’diethylethy...The oxidative coupling polymerization of p alkoxyphenols with Mn(acac)2ethylenediamine catalysts was carried out. The polymerization of pmethoxyphenol with the manganese(II) acetylacetonate [Mn(acac)2]N,N’diethylethylene diamine catalyst in CH2Cl2 at room temperature under an O2 atmosphere afforded a polymer, which mainly consists of the mphenylene unit, whereas the polymer obtained with Mn(acac)2 was rich in the oxyphenylene structure. The polymer yield and regioselectivity were significantly affected by the monomer and catalyst structures. The former catalyst system was also used for the coupling reaction of 2methoxy 4methylphenol. The corresponding carboncar bon coupling product was isolated with a regioselectivity of 95%.展开更多
An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Su...An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Suzuki,Heck and Sonogashira couplings,and afforded the corresponding products while exhibiting excellent activities and selectivities.More importantly,this catalyst can be readily recycled.These features show that such catalysts have significant potential applications in the future.展开更多
A kind of novel electroluminescence polymer has been prepared by oxidative-coupling polymerization of N-alkyl carbazole and trans-stilbene. The structure of the copolymers was characterized by elemental analysis, UV-v...A kind of novel electroluminescence polymer has been prepared by oxidative-coupling polymerization of N-alkyl carbazole and trans-stilbene. The structure of the copolymers was characterized by elemental analysis, UV-vis and FTIR spectra. The copolymers have good solubility in chloroform and acetone. Fluorescence spectra showed that these polymers are blue-light emitting materials.展开更多
Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium di...Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium dioxide particles, the titanium dioxide particles were surface-modified with a silicane coupling agent, methacryloylpropyltrimethoxysilicane. Polymer encapsulation in the presence of either modified-titanium dioxide particles or unmodified-titanium dioxide particles was carried out by dispersion polymerization of styrene, divinylbenzene in ethanol medium with polyvinylpyrroliclone as stabilizer, and 2, 2'-azobis(isobutyronitrile) as initiator. The modified-titanium dioxide was analyzed with Fourier-transform infrared spectroscopy(FTIR), UV-Vis spectrophotometer, thermo-gravimetric analysis and transmission microscope. The polymer encapsulation of modified-titanium dioxide and unmodified-titanium dioxide particles was confirmed with FTIR and transmission electron microscope. Results show that compared with unmodified-titanium dioxide, modified-titanium dioxide is more suitable for preparing inorganic core/orclanic shell composites.展开更多
An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively c...An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.展开更多
Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the az...Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 ℃ in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.展开更多
The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are p...The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.展开更多
Polymeric Grignard Reagent (PGR) based on the chloromethylated poly(ST-co-DVB) resinhas been prepared by means of anthracene-magnesium complex in THF (Anth-Mg-THF), andpolymer matrix with long polymethylene spacer was...Polymeric Grignard Reagent (PGR) based on the chloromethylated poly(ST-co-DVB) resinhas been prepared by means of anthracene-magnesium complex in THF (Anth-Mg-THF), andpolymer matrix with long polymethylene spacer was synthesized via the coupling reaction betweenPGR and α, ω-dibromoalkanes. Based on the studies of factors affecting the coupling, such ascatalyst,reaction time,the length of spacer etc.,this paper offers the optimal reaction conditionsand three typical experiment procedures. The mechanism for the formation and coupling reactionof PGR are also discussed.展开更多
Redox homeostasis,which is regulated by enzymes acting as regulatory valves,is crucial for maintaining the proper functioning of biomolecules and a stable microenvironment for physiological processes by modulating the...Redox homeostasis,which is regulated by enzymes acting as regulatory valves,is crucial for maintaining the proper functioning of biomolecules and a stable microenvironment for physiological processes by modulating the homeostasis of reactive oxygen species(ROS).Antioxidant enzymes in biocatalysis are used in the prevention or treatment of oxidative stress-related disease by counteracting the harmful effects of ROS.However,designing a system that can efficiently immobilize antioxidant enzymes with high catalytic activity and stability is still challenging.Bioinspired by photo-biocatalysis,a novel and effective catalase(CATase)-immobilized hydrogel platform has been developed by the proposed photo-enzymatic coupled radical polymerization strategy of the visible light coupling with the porphyrin-centered CATase.The higher catalytic stability and activity can therefore be achieved due to the preferential polymerization of CATase-immobilized hydrogel platform with a favorable three-dimensional network of enhanced coupling efficacy between light and enzymes.The mechanisms of free radical-initiated polymerization as well as the antioxidant cycle in the photo-CATase coupling system have been explored.Intriguingly,the CATase-immobilized hydrogel platform affords an unprecedented antioxidant ability to scavenge ROS and provide an effective cellular protection mechanism against external oxidative stress.Additionally,the CATase-immobilized hydrogel platform can effectively prevent peritoneal adhesion by reducing the expression of inflammatory cytokines.Therefore,the novel CATase-immobilized hydrogel platform is a potential candidate for physical barriers that effectively prevent postoperative adhesion formation,offering a new anti-adhesion strategy for clinical applications.展开更多
The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n...The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n-butoxy-2-methyl-(4-p-nitropheylazo)benzene (BMNPAB) and 9-ethylcarbazole (ECZ) was studied. It was confirmed that the CdS colloidal particles had a nanoscale size and quantum confinement effect adopting transmission electron microscopy and UV-Vis absorption spectroscopy. The addition of CdS nanoparticles as a photosensitizer in PVK will be significant enhancement of photoconductivity because of the high photocharge generation quantum efficiency and high charge transport to conducting polymer. The polymer composite film exhibited PR effect with a method of two-beam coupling experiment. And an asymmetric two. beam coupling gain of 45.8 cm^-1 without applied electric filed is obtained at 632.8 nm wavelength.展开更多
Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin ...Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system.展开更多
尼龙6(PA6)树脂具有优异的性能,其连续纤维复合材料在汽车、航空航天领域具有广泛应用。但是PA6树脂熔融后黏度较高,不易对连续纤维充分浸渍,并且连续纤维与PA6的复合材料界面黏附性较差,限制了其复合材料的性能和应用。针对这些问题,...尼龙6(PA6)树脂具有优异的性能,其连续纤维复合材料在汽车、航空航天领域具有广泛应用。但是PA6树脂熔融后黏度较高,不易对连续纤维充分浸渍,并且连续纤维与PA6的复合材料界面黏附性较差,限制了其复合材料的性能和应用。针对这些问题,文中对连续玻璃纤维增强尼龙6(CGF/PA6)复合材料开展了研究。首先,采用阴离子开环聚合制备PA6,确定了其最佳制备工艺;其次,用硅烷偶联剂KH550(AP)对连续玻璃纤维(CGF)进行改性,并对其进行了红外光谱表征;最后,通过原位聚合法制备了CGF/PA6复合材料,研究了AP改性对CGF/PA6复合材料力学性能的影响,并对CGF/PA6复合材料的拉伸断口进行了扫描电镜分析。结果表明,AP被键合到了CGF表面,AP改性可以增强CGF/PA6复合材料的界面黏附性,从而使CGF/PA6复合材料的拉伸强度得到改善,当AP用量为2%时,CGF/PA6复合材料的拉伸强度高达88.52 MPa,此时,复合材料的断裂伸长率最低,为4.90%。CGF/PA6复合材料的冲击强度变化不大,均在50 k J/m2左右,说明复合材料的韧性受CGF表面改性影响较小。展开更多
A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenati...A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenation,and C-N cross-coupling reactions under visible light irradiation with a broad substrate scope.Good-to-excellent yields were obtained with appreciable site selectivity and functional group tolerance.Metal-free and low-cost PCN photocatalyst can easily be recovered and reused several times.展开更多
文摘'Stepwise-coupling polymerization' (SCP) is a very useful approach for preparing microstructure-controllable ordered network polymers, including soluble one-dimensional ladderlike polymers (LP) and tubular polymers (TP), and two-dimensional sieve-plate polymers. The novel reactive LPs are important precursors of micro-structure controllable polymers such as 'fishbone-' or 'rowboat-' like mesomorphic polymers and their metal complexes as well as tubular polymers (TPs). They are full of great potential for use as advanced materials.
文摘Dihexylfluorene and N-butylcarbazole were copolymerized by solid-state oxidative coupling polymerization in the presence of anhydrous FeCl3 at room temperature. The solid-state films of the copolymers emitted blue light after beating at 150 ℃ in air for 24 h, no red-shifted emission was observed by fluorescence spectroscopy.
基金Supported by the National Natural Science Foundation of China (20274031)
文摘Soluble green light-emitting poly(9,9-dihexylfluorene- co-fluorenone) was synthesized by solvent-free oxidative coupling polymerization of 9,9-dihexylfluorene in a facile one-step reaction. The polymers were characterized by FT-IR, ^1H NMR, ^13C NMR, UV-Vis and fluorescence spectroscopy. The region-regular structure of the polymer linking at 2, 7'-position on the fluorene moieties was obtained. The FT-IR spectra of the polymers showed fluorenone vibration. The fluorescence spectra of the solid thin film of the polymers displayed green light-emitting, which was emitted from fluorenone moieties produced in the polymerization process.
文摘The oxidative coupling polymerization of p alkoxyphenols with Mn(acac)2ethylenediamine catalysts was carried out. The polymerization of pmethoxyphenol with the manganese(II) acetylacetonate [Mn(acac)2]N,N’diethylethylene diamine catalyst in CH2Cl2 at room temperature under an O2 atmosphere afforded a polymer, which mainly consists of the mphenylene unit, whereas the polymer obtained with Mn(acac)2 was rich in the oxyphenylene structure. The polymer yield and regioselectivity were significantly affected by the monomer and catalyst structures. The former catalyst system was also used for the coupling reaction of 2methoxy 4methylphenol. The corresponding carboncar bon coupling product was isolated with a regioselectivity of 95%.
基金supported by the National Natural Foundation of China(21422306,21203165,21403193)the Fundamental Research Funds for the Central Universities(2015XZZX004-04)~~
文摘An efficient catalyst system based on a Pd-metalated porous organic polymer bearing phenanthroline ligands was designed and synthesized.This catalyst was applied to various C–C bond-forming reactions,including the Suzuki,Heck and Sonogashira couplings,and afforded the corresponding products while exhibiting excellent activities and selectivities.More importantly,this catalyst can be readily recycled.These features show that such catalysts have significant potential applications in the future.
基金National Natural Science Foundation of ChinaEducation Ministry of China.
文摘A kind of novel electroluminescence polymer has been prepared by oxidative-coupling polymerization of N-alkyl carbazole and trans-stilbene. The structure of the copolymers was characterized by elemental analysis, UV-vis and FTIR spectra. The copolymers have good solubility in chloroform and acetone. Fluorescence spectra showed that these polymers are blue-light emitting materials.
基金Supported by National High Technology Research and Development Program of China (863 Program) (No. 2004AA302010) and Natural Science Foundation of Tianjin (No. 043186411) .
文摘Surface modification of nanometer titanium dioxide particles and effect of preparing TiO2/P (St-co-DVB) composites by dispersion polymerization are described. To introduce vinyl group onto the surface of titanium dioxide particles, the titanium dioxide particles were surface-modified with a silicane coupling agent, methacryloylpropyltrimethoxysilicane. Polymer encapsulation in the presence of either modified-titanium dioxide particles or unmodified-titanium dioxide particles was carried out by dispersion polymerization of styrene, divinylbenzene in ethanol medium with polyvinylpyrroliclone as stabilizer, and 2, 2'-azobis(isobutyronitrile) as initiator. The modified-titanium dioxide was analyzed with Fourier-transform infrared spectroscopy(FTIR), UV-Vis spectrophotometer, thermo-gravimetric analysis and transmission microscope. The polymer encapsulation of modified-titanium dioxide and unmodified-titanium dioxide particles was confirmed with FTIR and transmission electron microscope. Results show that compared with unmodified-titanium dioxide, modified-titanium dioxide is more suitable for preparing inorganic core/orclanic shell composites.
文摘An investigation was made into polystyrene (PS) grafted onto nanometre silicon carbide (SIC) particles. In our experiment, the grafting polymerization reaction was induced by a radio frequency (RF) inductively coupled plasma (ICP) treatment of the nanometre powder. FTIR (Fourier transform infrared spectrum) and XPS (X-ray photoelectron spectroscopy) results reveal that PS is grafted onto the surface of silicon carbide powder. An analysis is presented on the effectiveness of this approach as a function of plasma operating variables including the plasma treating power, treating time, and grafting reaction temperature and time.
基金financially supported by the National Natural Science Foundation of China(Nos.51233005,21004060 and 51073149)
文摘Three-arm and four-arm star-like polybutadienes (PBds) were synthesized via the combination of living anionic polymerization and the click coupling method. Kinetic study showed that the click reaction between the azido group terminated PBd-t-N3 and the alkyne-containing multifunctional linking reagent was fast and highly efficient. All coupling reactions were fully accomplished within 40 min at 50 ℃ in toluene in the presence of the reducing agent Cu(0), proven by 1H-NMR, FTIR and GPC measurements. For the coupling reactions between the PBd-t-N3 polymer and dialkyne-containing compound, the final conversion of the coupled PBd-PBd polymer was ca. 97.0%. When a PBd-t-N3 polymer was reacted with trialkyne-containing or tetraalkyne-containing compound, the conversion of three-arm or four-arm PBd was around 95.5% or 87.0%, respectively. Several factors influencing the coupling efficiency were studied, including the molecular weight of the initial PBd-t-N3, arm numbers and the molar ratio of the azido group to the alkynyl group. The results indicated that the conversion of the target products would be promoted when the molecular weight of the PBd-t-N3 was low and the molar ratio of the azido to alkynyl groups was close to 1.
基金Project supported by the National Key Research and Development Program of China(No.2017YFC0307604)the Talent Foundation of China University of Petroleum(No.Y1215042)the Graduate Innovation Program of China University of Petroleum(East China)(No.YCX2019084)
文摘The objective of this paper is to model the size-dependent thermo-mechanical behaviors of a shape memory polymer (SMP) microbeam.Size-dependent constitutive equations,which can capture the size effect of the SMP,are proposed based on the modified couple stress theory (MCST).The deformation energy expression of the SMP microbeam is obtained by employing the proposed size-dependent constitutive equation and Bernoulli-Euler beam theory.An SMP microbeam model,which includes the formulations of deflection,strain,curvature,stress and couple stress,is developed by using the principle of minimum potential energy and the separation of variables together.The sizedependent thermo-mechanical and shape memory behaviors of the SMP microbeam and the influence of the Poisson ratio are numerically investigated according to the developed SMP microbeam model.Results show that the size effects of the SMP microbeam are significant when the dimensionless height is small enough.However,they are too slight to be necessarily considered when the dimensionless height is large enough.The bending flexibility and stress level of the SMP microbeam rise with the increasing dimensionless height,while the couple stress level declines with the increasing dimensionless height.The larger the dimensionless height is,the more obvious the viscous property and shape memory effect of the SMP microbeam are.The Poisson ratio has obvious influence on the size-dependent behaviors of the SMP microbeam.The paper provides a theoretical basis and a quantitatively analyzing tool for the design and analysis of SMP micro-structures in the field of biological medicine,microelectronic devices and micro-electro-mechanical system (MEMS) self-assembling.
文摘Polymeric Grignard Reagent (PGR) based on the chloromethylated poly(ST-co-DVB) resinhas been prepared by means of anthracene-magnesium complex in THF (Anth-Mg-THF), andpolymer matrix with long polymethylene spacer was synthesized via the coupling reaction betweenPGR and α, ω-dibromoalkanes. Based on the studies of factors affecting the coupling, such ascatalyst,reaction time,the length of spacer etc.,this paper offers the optimal reaction conditionsand three typical experiment procedures. The mechanism for the formation and coupling reactionof PGR are also discussed.
基金supported by the National Science Fund for Distinguished Young Scholars(52125305)the National Natural Science Foundation of China(52173289,52273147)the Key Project of the First Demonstration Project(Artificial intelligence)of Interdisciplinary Joint Research of Tongji University(ZD-11-202151)。
文摘Redox homeostasis,which is regulated by enzymes acting as regulatory valves,is crucial for maintaining the proper functioning of biomolecules and a stable microenvironment for physiological processes by modulating the homeostasis of reactive oxygen species(ROS).Antioxidant enzymes in biocatalysis are used in the prevention or treatment of oxidative stress-related disease by counteracting the harmful effects of ROS.However,designing a system that can efficiently immobilize antioxidant enzymes with high catalytic activity and stability is still challenging.Bioinspired by photo-biocatalysis,a novel and effective catalase(CATase)-immobilized hydrogel platform has been developed by the proposed photo-enzymatic coupled radical polymerization strategy of the visible light coupling with the porphyrin-centered CATase.The higher catalytic stability and activity can therefore be achieved due to the preferential polymerization of CATase-immobilized hydrogel platform with a favorable three-dimensional network of enhanced coupling efficacy between light and enzymes.The mechanisms of free radical-initiated polymerization as well as the antioxidant cycle in the photo-CATase coupling system have been explored.Intriguingly,the CATase-immobilized hydrogel platform affords an unprecedented antioxidant ability to scavenge ROS and provide an effective cellular protection mechanism against external oxidative stress.Additionally,the CATase-immobilized hydrogel platform can effectively prevent peritoneal adhesion by reducing the expression of inflammatory cytokines.Therefore,the novel CATase-immobilized hydrogel platform is a potential candidate for physical barriers that effectively prevent postoperative adhesion formation,offering a new anti-adhesion strategy for clinical applications.
基金Key Project of the National Natural Science Foundation of China(No.60537050)
文摘The photorefractive (PR) performance of an organic/inorganic hybrid polymer composite sensitized by CdS nanoparticles, combining poly(N-vinylcarbazole) (PVK), the second-order optically nonlinear chromophore 1-n-butoxy-2-methyl-(4-p-nitropheylazo)benzene (BMNPAB) and 9-ethylcarbazole (ECZ) was studied. It was confirmed that the CdS colloidal particles had a nanoscale size and quantum confinement effect adopting transmission electron microscopy and UV-Vis absorption spectroscopy. The addition of CdS nanoparticles as a photosensitizer in PVK will be significant enhancement of photoconductivity because of the high photocharge generation quantum efficiency and high charge transport to conducting polymer. The polymer composite film exhibited PR effect with a method of two-beam coupling experiment. And an asymmetric two. beam coupling gain of 45.8 cm^-1 without applied electric filed is obtained at 632.8 nm wavelength.
基金the financial support of the research fund of the Science and Technology Innovation Program of Hunan Province(2020RC2076)the General Project of Education Department of Hunan Province(21C008)+2 种基金the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University(2022C02)the Youth Science and Technology Talent Project of Hunan Province(2022RC1197)the Hunan Provincial Natural Science Foundation of China(2021JJ40529)。
文摘Combining photocatalytic organic reactions with CO_(2)reduction is an efficient solar energy utilization mode,but it is still limited by the organic species that can be matched and the low conversion.Herein,ultrathin organic polymer with p-πconjugated structure(TPP)was rationally designed and prepared,and showed a high yield of CO(15.2 mmol g^(-1))and conversion of SAS coupled products(100%),far exceeding the organic polymer with P=O structure.The enhanced photoredox activity of TPP is ascribed to the orbital interaction between the p-orbital on phosphorus and theπ-orbitals of aromatic,which can accelerate the photoinduced charge carrier separation and improve the CO_(2)adsorption capacity.TPP can also be used for the dehydrocoupling of various benzyl mercaptans to the corresponding SAS bond products.This work provides a new concept for the efficient synthesis of disulfide bonds combined with CO_(2)reduction in a photoreaction system.
文摘尼龙6(PA6)树脂具有优异的性能,其连续纤维复合材料在汽车、航空航天领域具有广泛应用。但是PA6树脂熔融后黏度较高,不易对连续纤维充分浸渍,并且连续纤维与PA6的复合材料界面黏附性较差,限制了其复合材料的性能和应用。针对这些问题,文中对连续玻璃纤维增强尼龙6(CGF/PA6)复合材料开展了研究。首先,采用阴离子开环聚合制备PA6,确定了其最佳制备工艺;其次,用硅烷偶联剂KH550(AP)对连续玻璃纤维(CGF)进行改性,并对其进行了红外光谱表征;最后,通过原位聚合法制备了CGF/PA6复合材料,研究了AP改性对CGF/PA6复合材料力学性能的影响,并对CGF/PA6复合材料的拉伸断口进行了扫描电镜分析。结果表明,AP被键合到了CGF表面,AP改性可以增强CGF/PA6复合材料的界面黏附性,从而使CGF/PA6复合材料的拉伸强度得到改善,当AP用量为2%时,CGF/PA6复合材料的拉伸强度高达88.52 MPa,此时,复合材料的断裂伸长率最低,为4.90%。CGF/PA6复合材料的冲击强度变化不大,均在50 k J/m2左右,说明复合材料的韧性受CGF表面改性影响较小。
基金supported by the National Natural Science Foundation of China(21972094 and 21805191)Guangdong Special Support Program+4 种基金Pengcheng Scholar ProgramChina Postdoctoral Science Foundation(2019M653004)Shenzhen Peacock Plan(KQTD2016053112042971)Shenzhen Science and Technology Program(JCYJ20190808142001745,JCYJ20200812160737002,and RCJC20200714114434086)Guangdong Basic and Applied Basic Research Foundation(2020A1515010982)。
文摘A merger of copper catalysis and semiconductor photocatalysis using polymeric carbon nitride(PCN)for multi-type cross-coupling reactions was developed.This dual-catalytic system enables mild C-H arylation,chalcogenation,and C-N cross-coupling reactions under visible light irradiation with a broad substrate scope.Good-to-excellent yields were obtained with appreciable site selectivity and functional group tolerance.Metal-free and low-cost PCN photocatalyst can easily be recovered and reused several times.