The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner M...The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.展开更多
Disturbance can affect biomass allocation of plants,but can it influence plant reproductive behavior?To address this issue,we performed field plant community investigations and explored the reproductive behaviors of S...Disturbance can affect biomass allocation of plants,but can it influence plant reproductive behavior?To address this issue,we performed field plant community investigations and explored the reproductive behaviors of Stipa grandis and Stipa krylovii in response to grazing and mowing treatments at Maodeng pasture of Xilinguole League of Inner Mongolia,China during 2007–2009.The results showed that,with a similar niche width for the two plant species under mowing and grazing treatments,mowing significantly increased the ratio of ramet to genet number of S.krylovii and the carbon to nitrogen ratio of S.grandis,and grazing significantly decreased the ratio of vegetative to reproductive tiller biomass of S.grandis and increased the ratio of vegetative to reproductive tiller number of S.krylovii.Regression analysis showed that the significantly positive effect of root to shoot biomass ratio was stronger on the ratio of vegetative to reproductive tiller number of S.grandis than on that of S.krylovii.These results indicated that grazing and mowing influenced the reproductive manner and the process of sexual reproduction of S.grandis and S.krylovii.展开更多
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on...Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.展开更多
This study was aimed to evaluate the potential effects of rest grazing on organic carbon storage in Stipa grandis steppe of Inner Mongolia, China. Using potassium dichromate heating method, we analyzed the organic car...This study was aimed to evaluate the potential effects of rest grazing on organic carbon storage in Stipa grandis steppe of Inner Mongolia, China. Using potassium dichromate heating method, we analyzed the organic carbon storage of plant and soil in Stipa grand& steppe after rest grazing for 3, 6, and 9 yr. The results indicated that as the rest grazing ages prolonged, the biomass of aboveground parts, litter and belowground plant parts (roots) of the plant communities all increased, meanwhile the C content of the biomass increased with the rest grazing ages prolonging. For RG0, RG3a, RG6a, and RG9a, C storage in aboveground vegetation were 60.7, 76.9, 82.8 and 122.2 g C m2, respectively; C storage of litter were 5.1, 5.8, 20.4 and 25.5 g C m^-2, respectively; C storage of belowground roots (0-100 cm) were 475.2, 663.0, 1 115.0 and 1 867.3 g C m^-2, respectively; C storage in 0-100 cm soil were 13.97, 15.76, 18.60 and 32.41 kg C m^-2, respectively. As the rest grazing ages prolonged, the organic C storage in plant communities and soil increased. The C storage ofbelowground roots and soil organic C was mainly concentrated in 0-40 cm soil body. The increased soil organic C for RG3a accounted for 89.8% of the increased carbon in vegetation-soil system, 87.2% for RG6a, and 92.6% for RG9a. From the perspective of C sequestration cost, total cost for RG3a, RG6,, and RG9a were 2 903.4, 5 806.8 and 8 710.2 CNY haq, respectively. The cost reduced with the extension of rest grazing ages, 0.15 CNY kg^-1 C for RG3a, 0.11 CNY kg-~ C for RG6a and 0.04 CNY kg℃ for RG9a. From the growth characteristics of grassland plants, the spring was one of the two avoided grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. Organic C storage for RG9a was the highest, while the cost of C sequestration was the lowest. Therefore, spring rest grazing should be encouraged because it was proved to be a very efficient grassland use pattern.展开更多
Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from Ju...Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the observation site in winter; the annual CO2 efflux of total ecosystem ranged from 160.5 gC/(m^2·a) to 162.8 gC/(m^2·a) and that of soil ranged from 118.7 gC/(m^2·a) to 152.3 gC/(m^2·a). The annual SR accounted for about 74.0% to 93.5% of the annual TER, but the results of Analysis of Variance (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79,1% 95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers.展开更多
Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and...Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and symbolized mycorrhizal fungi with Stipa purpurea responded to the precipitation change in Tibetan alpine steppe ecosystem across a precipitation gradient from 50 mm to 400 mm. As precipitation increased, the proportion of thinner fine roots(diameter < 0.4 mm) in total roots increased significantly; while the mycorrhizal colonization percentage, either associated with thinner or thicker roots, decreased. This phenomenon indicated that fine root development and symbolized mycorrhizal fungi are likely alternative, and plant preferred to develop fine root rather than build a symbiotic relationship with mycorrhizal fungi in more benign niches with higher precipitation. Also, root diameter was negatively correlated with specific root length(SRL), but positively correlated with AM fungal colonization percentage, indicating thicker-root species rely more on mycorrhizal fungi in alpine steppe. The complementarity between fine root and mycorrhizal fungi of S. purpurea is mediated by precipitation in Tibetan alpine steppe.展开更多
文摘The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.
基金funded by the National Basic Research Program of China(2009CB421303,2007CB106802)
文摘Disturbance can affect biomass allocation of plants,but can it influence plant reproductive behavior?To address this issue,we performed field plant community investigations and explored the reproductive behaviors of Stipa grandis and Stipa krylovii in response to grazing and mowing treatments at Maodeng pasture of Xilinguole League of Inner Mongolia,China during 2007–2009.The results showed that,with a similar niche width for the two plant species under mowing and grazing treatments,mowing significantly increased the ratio of ramet to genet number of S.krylovii and the carbon to nitrogen ratio of S.grandis,and grazing significantly decreased the ratio of vegetative to reproductive tiller biomass of S.grandis and increased the ratio of vegetative to reproductive tiller number of S.krylovii.Regression analysis showed that the significantly positive effect of root to shoot biomass ratio was stronger on the ratio of vegetative to reproductive tiller number of S.grandis than on that of S.krylovii.These results indicated that grazing and mowing influenced the reproductive manner and the process of sexual reproduction of S.grandis and S.krylovii.
基金funded by the National Natural Science Foundation of China (31270500, 31240002)the Strategic Priority Research Program of Chinese Academy of Sciences (XDA05 050602)+1 种基金the Open Research Fund of the Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciencesthe support of the Duolun Restoration Ecology Research Station, which is part of the Institute of Botany, Chinese Academy of Sciences, for providing access to the sampling site
文摘Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions.
基金supported by the National Natural Science Foundation of China (31170435 and 31000242)the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD13B07)
文摘This study was aimed to evaluate the potential effects of rest grazing on organic carbon storage in Stipa grandis steppe of Inner Mongolia, China. Using potassium dichromate heating method, we analyzed the organic carbon storage of plant and soil in Stipa grand& steppe after rest grazing for 3, 6, and 9 yr. The results indicated that as the rest grazing ages prolonged, the biomass of aboveground parts, litter and belowground plant parts (roots) of the plant communities all increased, meanwhile the C content of the biomass increased with the rest grazing ages prolonging. For RG0, RG3a, RG6a, and RG9a, C storage in aboveground vegetation were 60.7, 76.9, 82.8 and 122.2 g C m2, respectively; C storage of litter were 5.1, 5.8, 20.4 and 25.5 g C m^-2, respectively; C storage of belowground roots (0-100 cm) were 475.2, 663.0, 1 115.0 and 1 867.3 g C m^-2, respectively; C storage in 0-100 cm soil were 13.97, 15.76, 18.60 and 32.41 kg C m^-2, respectively. As the rest grazing ages prolonged, the organic C storage in plant communities and soil increased. The C storage ofbelowground roots and soil organic C was mainly concentrated in 0-40 cm soil body. The increased soil organic C for RG3a accounted for 89.8% of the increased carbon in vegetation-soil system, 87.2% for RG6a, and 92.6% for RG9a. From the perspective of C sequestration cost, total cost for RG3a, RG6,, and RG9a were 2 903.4, 5 806.8 and 8 710.2 CNY haq, respectively. The cost reduced with the extension of rest grazing ages, 0.15 CNY kg^-1 C for RG3a, 0.11 CNY kg-~ C for RG6a and 0.04 CNY kg℃ for RG9a. From the growth characteristics of grassland plants, the spring was one of the two avoided grazing periods, timely rest grazing could effectively restore and update grassland vegetation, and was beneficial to the sustainable use of grassland. Organic C storage for RG9a was the highest, while the cost of C sequestration was the lowest. Therefore, spring rest grazing should be encouraged because it was proved to be a very efficient grassland use pattern.
基金The State Key Basic Research Development and Planning Project (No. 2002CB412503) the Knowledge Innovation Program of theChinese Academy of Sciences (No. KZCX1-SW-01-04) the Knowledge Innovation Project of the Institute of Geographic Sciences and NaturalResources Research, Chinese Academy of Sciences(No. CXIOG-E01-03-01) and the National Natural Science Foundation of China(No. 40501072)
文摘Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the observation site in winter; the annual CO2 efflux of total ecosystem ranged from 160.5 gC/(m^2·a) to 162.8 gC/(m^2·a) and that of soil ranged from 118.7 gC/(m^2·a) to 152.3 gC/(m^2·a). The annual SR accounted for about 74.0% to 93.5% of the annual TER, but the results of Analysis of Variance (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79,1% 95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers.
基金funded by the The National Key Research and Development Program of China (2016YFC0501802)the Key Projects in the National Basic Research Programs (2013CB956000)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB15010201) of China
文摘Development of fine roots and formation of symbiosis with arbuscular mycorrhizal(AM) fungi represent two strategies for plants to acquire nutrient and water from soil. Here, we elucidated how fine root development and symbolized mycorrhizal fungi with Stipa purpurea responded to the precipitation change in Tibetan alpine steppe ecosystem across a precipitation gradient from 50 mm to 400 mm. As precipitation increased, the proportion of thinner fine roots(diameter < 0.4 mm) in total roots increased significantly; while the mycorrhizal colonization percentage, either associated with thinner or thicker roots, decreased. This phenomenon indicated that fine root development and symbolized mycorrhizal fungi are likely alternative, and plant preferred to develop fine root rather than build a symbiotic relationship with mycorrhizal fungi in more benign niches with higher precipitation. Also, root diameter was negatively correlated with specific root length(SRL), but positively correlated with AM fungal colonization percentage, indicating thicker-root species rely more on mycorrhizal fungi in alpine steppe. The complementarity between fine root and mycorrhizal fungi of S. purpurea is mediated by precipitation in Tibetan alpine steppe.