Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take ...Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.展开更多
In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The firs...In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.展开更多
The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding ...The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument...In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.展开更多
The parametric estimation problem for diffusion processes with small white noise based on continuous time observations is well developed. However,in parametric inference,it is more realistic and interesting to conside...The parametric estimation problem for diffusion processes with small white noise based on continuous time observations is well developed. However,in parametric inference,it is more realistic and interesting to consider asymptotic estimation for diffusion processes based on discrete observations. The least squares method is used to obtain the estimator of the drift parameter for stochastic differential equations( SDEs) driven by general Lévy noises when the process is observed discretely. Its strong consistency and the rate of convergence of the squares estimator are studied under some regularity conditions.展开更多
The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also pr...The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.展开更多
Stochastic differential equations(SDEs)are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources.The identification of SDEs governing a sy...Stochastic differential equations(SDEs)are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources.The identification of SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and the complexity of the system’s dynamics.The practical utility of existing parametric approaches for identifying SDEs is usually limited by insufficient data resources.This study presents a novel framework for identifying SDEs by leveraging the sparse Bayesian learning(SBL)technique to search for a parsimonious,yet physically necessary representation from the space of candidate basis functions.More importantly,we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression problem for the discovery of SDEs that requires considerably less time-series data.The effectiveness of the proposed framework is demonstrated using real data on stock and oil prices,bearing variation,and wind speed,as well as simulated data on well-known stochastic dynamical systems,including the generalized Wiener process and Langevin equation.This framework aims to assist specialists in extracting stochastic mathematical models from random phenomena in the natural sciences,economics,and engineering fields for analysis,prediction,and decision making.展开更多
The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of soluti...The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.展开更多
The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it consi...The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.展开更多
A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some...A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.展开更多
One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, ...One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".展开更多
Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong conve...Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong convergence can preserve the mean square stability with the sufficiently small stepsize. Weak variants and their mean square stability are also considered. Several numerical experiments are given for illustration and show that the fully implicit methods are superior to those of the explicit methods in terms of mean-square stabilities for relatively large stepsizes especially.展开更多
A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpos...A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpose is to prove that the semi-implicit Euler solutions converge to the true solutions in the mean-square sense. An example is given for illustration.展开更多
In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedba...In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.展开更多
A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already repor...A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.展开更多
This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,consi...This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.展开更多
The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same str...The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.展开更多
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the conv...In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.展开更多
For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.
基金supported by Basic Science Research Program through the National Natural Science Foundation of China(Grant No.61867003)Key Project of Science and Technology Research and Development Plan of China Railway Co.,Ltd.(N2022X009).
文摘Time based maintenance(TBM)and condition based maintenance(CBM)are widely applied in many large wind farms to optimize the maintenance issues of wind turbine gearboxes,however,these maintenance strategies do not take into account environmental benefits during full life cycle such as carbon emissions issues.Hence,this article proposes a carbon emissions computing model for preventive maintenance activities of wind turbine gearboxes to solve the issue.Based on the change of the gearbox state during operation and the influence of external random factors on the gearbox state,a stochastic differential equation model(SDE)and corresponding carbon emission model are established,wherein SDE is applied to model the evolution of the device state,whereas carbon emission is used to implement carbon emissions computing.The simulation results indicate that the proposed preventive maintenance cannot ensure reliable operation of wind turbine gearboxes but reduce carbon emissions during their lifespan.Compared with TBM,CBM minimizes unit carbon emissions without influencing reliable operation,making it an effective maintenance method.
基金supported in part by theNSFC(11871037)Shandong Province(JQ201202)+3 种基金NSFC-RS(11661130148NA150344)111 Project(B12023)supported by the Qingdao Postdoctoral Application Research Project(QDBSH20220202092)。
文摘In this paper we consider general coupled mean-field reflected forward-backward stochastic differential equations(FBSDEs),whose coefficients not only depend on the solution but also on the law of the solution.The first part of the paper is devoted to the existence and the uniqueness of solutions for such general mean-field reflected backward stochastic differential equations(BSDEs)under Lipschitz conditions,and for the one-dimensional case a comparison theorem is studied.With the help of this comparison result,we prove the existence of the solution for our mean-field reflected forward-backward stochastic differential equation under continuity assumptions.It should be mentioned that,under appropriate assumptions,we prove the uniqueness of this solution as well as that of a comparison theorem for mean-field reflected FBSDEs in a non-trivial manner.
基金The National Natural Science Foundation of China(No.11171065,81130068)the Natural Science Foundation of Jiangsu Province(No.BK2011058)the Fundamental Research Funds for the Central Universities(No.JKPZ2013015)
文摘The nonlinear mixed-effects model with stochastic differential equations (SDEs) is used to model the population pharmacokinetic (PPK) data that are extended from ordinary differential equations (ODEs) by adding a stochastic term to the state equation. Compared with the ODEs, the SDEs can model correlated residuals which are ubiquitous in actual pharmacokinetic problems. The Bayesian estimation is provided for nonlinear mixed-effects models based on stochastic differential equations. Combining the Gibbs and the Metropolis-Hastings algorithms, the population and individual parameter values are given through the parameter posterior predictive distributions. The analysis and simulation results show that the performance of the Bayesian estimation for mixed-effects SDEs model and analysis of population pharmacokinetic data is reliable. The results suggest that the proposed method is feasible for population pharmacokinetic data.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
基金the National Natural Science Foundation(10371067)the National Basic Research Program of China(973 Program,2007CB814904)+2 种基金the Natural Science Foundation of Shandong Province(Z2006A01)the Doctoral Fund of Education Ministry of China,and Youth Growth Foundation of Shandong University at Weihai, P.R.China. Xiao acknowledges the Natural Science Foundation of Shandong Province (ZR2009AQ017)Independent Innovation Foundation of Shandong University,IIFSDU
文摘In this article, we study the multi-dimensional reflected backward stochastic differential equations. The existence and uniqueness result of the solution for this kind of equation is proved by the fixed point argument where every element of the solution is forced to stay above the given stochastic process, i.e., multi-dimensional obstacle, respectively. We also give a kind of multi-dimensional comparison theorem for the reflected BSDE and then use it as the tool to prove an existence result for the multi-dimensional reflected BSDE where the coefficient is continuous and has linear growth.
文摘The parametric estimation problem for diffusion processes with small white noise based on continuous time observations is well developed. However,in parametric inference,it is more realistic and interesting to consider asymptotic estimation for diffusion processes based on discrete observations. The least squares method is used to obtain the estimator of the drift parameter for stochastic differential equations( SDEs) driven by general Lévy noises when the process is observed discretely. Its strong consistency and the rate of convergence of the squares estimator are studied under some regularity conditions.
基金This work was supported by the National Natural Science Foundation of China (10001022 and 10371067)the Excellent Young Teachers Program and the Doctoral program Foundation of MOE and Shandong Province,P.R.C.
文摘The existence and uniqueness results of fully coupled forward-backward stochastic differential equations with stopping time (unbounded) is obtained. One kind of comparison theorem for this kind of equations is also proved.
基金supported by the National Key Research and Development Program of China(2018YFB1701202)the National Natural Science Foundation of China(92167201 and 51975237)the Fundamental Research Funds for the Central Universities,Huazhong University of Science and Technology(2021JYCXJJ028)。
文摘Stochastic differential equations(SDEs)are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources.The identification of SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and the complexity of the system’s dynamics.The practical utility of existing parametric approaches for identifying SDEs is usually limited by insufficient data resources.This study presents a novel framework for identifying SDEs by leveraging the sparse Bayesian learning(SBL)technique to search for a parsimonious,yet physically necessary representation from the space of candidate basis functions.More importantly,we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression problem for the discovery of SDEs that requires considerably less time-series data.The effectiveness of the proposed framework is demonstrated using real data on stock and oil prices,bearing variation,and wind speed,as well as simulated data on well-known stochastic dynamical systems,including the generalized Wiener process and Langevin equation.This framework aims to assist specialists in extracting stochastic mathematical models from random phenomena in the natural sciences,economics,and engineering fields for analysis,prediction,and decision making.
文摘The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.
文摘The article first studies the fully coupled Forward-Backward Stochastic Differential Equations (FBSDEs) with the continuous local martingale. The article is mainly divided into two parts. In the first part, it considers Backward Stochastic Differential Equations (BSDEs) with the continuous local martingale. Then, on the basis of it, in the second part it considers the fully coupled FBSDEs with the continuous local martingale. It is proved that their solutions exist and are unique under the monotonicity conditions.
基金supported by the National Natural Science Foundation of China (No. 10771122)the NaturalScience Foundation of Shandong Province of China (No. Y2006A08)the National Basic ResearchProgram of China (973 Program) (No. 2007CB814900)
文摘A general type of forward-backward doubly stochastic differential equations (FBDSDEs) is studied. It extends many important equations that have been well studied, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness of measurable solutions are established with a incthod of continuation. Furthermore, the continuity and differentiability of the solutions to FBDSDEs depending on parameters is discussed.
基金National Natural Science Foundation of China ( No. 11171062 ) Natural Science Foundation for the Youth,China ( No.11101077) Innovation Program of Shanghai Municipal Education Commission,China ( No. 12ZZ063)
文摘One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".
基金National Natural Science Foundations of China(Nos.11561028,11101101,11461032,11401267)Natural Science Foundations of Jiangxi Province,China(Nos.20151BAB201013,20151BAB201010,20151BAB201015)
文摘Positive results are proved here about the ability of balanced methods to reproduce the mean square stability of the impulsive stochastic differential equations. It is shown that the balanced methods with strong convergence can preserve the mean square stability with the sufficiently small stepsize. Weak variants and their mean square stability are also considered. Several numerical experiments are given for illustration and show that the fully implicit methods are superior to those of the explicit methods in terms of mean-square stabilities for relatively large stepsizes especially.
基金National Natural Science Foundations of China(Nos.11401261,11471071)Qing Lan Project of Jiangsu Province,China(No.2012)+2 种基金Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB110005)the Grant of Jiangsu Second Normal University(No.JSNU-ZY-02)the Jiangsu Government Overseas Study Scholarship,China
文摘A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpose is to prove that the semi-implicit Euler solutions converge to the true solutions in the mean-square sense. An example is given for illustration.
基金The NSF(10671112)of ChinaNational Basic Research Program(973 Program)(2007CB814904)of Chinathe NSF(Z2006A01)of Shandong Province and the Chinese New Century Young Teachers Program
文摘In this paper, we use the solutions of forward-backward stochastic differential equations to get the optimal control for backward stochastic linear quadratic optimal control problem. And we also give the linear feedback regulator for the optimal control problem by using the solutions of a group of Riccati equations.
基金National Natural Science Foundation of China(No.11171352)
文摘A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.
基金Supported by the International Science&Technology Cooperation Program of China(No.2010DFA14400)the National Natural Science Foundation of China(No.60503015)the National High Technology Research and Development Programme of China(No.2008AA01A201)
文摘This paper presents software reliability growth models(SRGMs) with change-point based on the stochastic differential equation(SDE).Although SRGMs based on SDE have been developed in a large scale software system,considering the variation of failure distribution in the existing models during testing time is limited.These SDE SRGMs assume that failures have the same distribution.However,in practice,the fault detection rate can be affected by some factors and may be changed at certain point as time proceeds.With respect to this issue,in this paper,SDE SRGMs with changepoint are proposed to precisely reflect the variations of the failure distribution.A real data set is used to evaluate the new models.The experimental results show that the proposed models have a fairly accurate prediction capability.
文摘The comparison theorems of solutions for BSDEs in fully coupled forward-backward stochastic differential equations (FBSDEs) are studied in this paper, here in the fully coupled FBSDEs the forward SDEs are the same structure.
文摘In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving and of first order for solving and in norm.
文摘For a stochastic differential equation with non-Lipschitz coefficients, we construct, by Euler scheme, a measurable flow of the solution, and we prove the solution is a Markov process.