Inertial Navigation System(INS)and Global Navigation Satellite System(GNSS)integration requires accurate modelling of both INS deterministic and stochastic errors.The Allan Variance(AV)analysis on INS static data is o...Inertial Navigation System(INS)and Global Navigation Satellite System(GNSS)integration requires accurate modelling of both INS deterministic and stochastic errors.The Allan Variance(AV)analysis on INS static data is one method of determining INS stochastic errors.However,it is known that INS errors can vary depending on a vehicle’s motion and environment,and application of AV results from static data in kinematic operations typically results in an over-confident estimation of stochastic.In order to overcome this limitation,this paper proposes the use of Dynamic Allan Variance(DAV).The paper compares the resulting performance of the INS/GNSS integrated system by varying the stochastic coefficients obtained from the AV and DAV.The results show that the performance improved when utilizing the stochastic coefficients obtained from the DAV,applied on a kinematic dataset compared to the AV,applied on a static laboratory dataset.展开更多
The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic ...The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.展开更多
Grain-size distribution data,as a substitute for measuring hydraulic conductivity(K),has often been used to get K value indirectly.With grain-size distribution data of 150 sets of samples being input data,this study c...Grain-size distribution data,as a substitute for measuring hydraulic conductivity(K),has often been used to get K value indirectly.With grain-size distribution data of 150 sets of samples being input data,this study combined the Artificial Neural Network technology(ANN)and Markov Chain Monte Carlo method(MCMC),which replaced the Monte Carlo method(MC)of Generalized Likelihood Uncertainty Estimation(GLUE),to establish the GLUE-ANN model for hydraulic conductivity prediction and uncertainty analysis.By means of applying the GLUE-ANN model to a typical piedmont region and central region of North China Plain,and being compared with actually measured values of hydraulic conductivity,the relative error ranges are between 1.55%and 23.53%and between 14.08%and 27.22%respectively,the accuracy of which can meet the requirements of groundwater resources assessment.The global best parameter gained through posterior distribution test indicates that the GLUEANN model,which has satisfying sampling efficiency and optimization capability,is able to reasonably reflect the uncertainty of hydrogeological parameters.Furthermore,the influence of stochastic observation error(SOE)in grain-size analysis upon prediction of hydraulic conductivity was discussed,and it is believed that the influence can not be neglected.展开更多
This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign...This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign. Then, by modifying the nominal controller to minimize the variance of the actual system performanee from the desired performance over the whole frequency range, we obtain an optimal robust design method for a class of stochastic model errors. Moreover, the result can be used to give a good prediction to the achievable average tracking performance and control energy for practical system designs. The validity of obtained results can be illustrated by the simulation research.展开更多
In this paper the Kiefer-Wolfowitz (KW) procedure for searching the extremum of the regression function as well as the Robbins-Monro (RM) procedure for solving the regression equation are modified in order that they c...In this paper the Kiefer-Wolfowitz (KW) procedure for searching the extremum of the regression function as well as the Robbins-Monro (RM) procedure for solving the regression equation are modified in order that they can be applied to the case when the measurement errors form an ARMA process. Simple conditions are given to guarantee their convergence to the extremum and the root of regression function respectively by using a new approach combining both the probabilistic method and the ordinary differential equation (ODE) method. The results given here are better than the well-known ones even if the measurement error is the martingale difference sequence.展开更多
The influences of joints' error, motion history, speed and robot posture on repeatability are analyzed and the mathematical expressions of the quantity, direction and distribution of the stochastic positional erro...The influences of joints' error, motion history, speed and robot posture on repeatability are analyzed and the mathematical expressions of the quantity, direction and distribution of the stochastic positional error are derived . Using this model the magnitude and direction of the stochastic positional error after any motion can be preestimated and compensated .展开更多
文摘Inertial Navigation System(INS)and Global Navigation Satellite System(GNSS)integration requires accurate modelling of both INS deterministic and stochastic errors.The Allan Variance(AV)analysis on INS static data is one method of determining INS stochastic errors.However,it is known that INS errors can vary depending on a vehicle’s motion and environment,and application of AV results from static data in kinematic operations typically results in an over-confident estimation of stochastic.In order to overcome this limitation,this paper proposes the use of Dynamic Allan Variance(DAV).The paper compares the resulting performance of the INS/GNSS integrated system by varying the stochastic coefficients obtained from the AV and DAV.The results show that the performance improved when utilizing the stochastic coefficients obtained from the DAV,applied on a kinematic dataset compared to the AV,applied on a static laboratory dataset.
基金Project(2012CB725400)supported by the National Basic Research Program of ChinaProjects(71271023,71322102)supported by the National Science Foundation of ChinaProject(2015JBM053)supported by the Fundamental Research Funds for the Central Universities,China
文摘The cumulative prospect theory(CPT) is applied to study travelers' route choice behavior in a degradable transport network. A cumulative prospect theory-based user equilibrium(CPT-UE) model considering stochastic perception error(SPE) within travelers' route choice decision process is developed. The SPE is conditionally dependent on the actual travel time distribution, which is different from the deterministic perception error used in the traditional logit-based stochastic user equilibrium. The CPT-UE model is formulated as a variational inequality problem and solved by a heuristic solution algorithm. Numerical examples are provided to illustrate the application of the proposed model and efficiency of the solution algorithm. The effects of SPE on the reference point determination, cumulative prospect value estimation, route choice decision and network performance evaluation are investigated.
基金This study was supported by Key Laboratory of Groundwater Sciences and Engineering,Ministry of Natural Resources(MNR)and the China Geological Survey project(No.DD20190252).
文摘Grain-size distribution data,as a substitute for measuring hydraulic conductivity(K),has often been used to get K value indirectly.With grain-size distribution data of 150 sets of samples being input data,this study combined the Artificial Neural Network technology(ANN)and Markov Chain Monte Carlo method(MCMC),which replaced the Monte Carlo method(MC)of Generalized Likelihood Uncertainty Estimation(GLUE),to establish the GLUE-ANN model for hydraulic conductivity prediction and uncertainty analysis.By means of applying the GLUE-ANN model to a typical piedmont region and central region of North China Plain,and being compared with actually measured values of hydraulic conductivity,the relative error ranges are between 1.55%and 23.53%and between 14.08%and 27.22%respectively,the accuracy of which can meet the requirements of groundwater resources assessment.The global best parameter gained through posterior distribution test indicates that the GLUEANN model,which has satisfying sampling efficiency and optimization capability,is able to reasonably reflect the uncertainty of hydrogeological parameters.Furthermore,the influence of stochastic observation error(SOE)in grain-size analysis upon prediction of hydraulic conductivity was discussed,and it is believed that the influence can not be neglected.
文摘This paper has investigated how the optimization methods can be used to deal with plant uncertainty in linear feedback control design. Firstly, we define a weighted sensitivity error function based on robust redesign. Then, by modifying the nominal controller to minimize the variance of the actual system performanee from the desired performance over the whole frequency range, we obtain an optimal robust design method for a class of stochastic model errors. Moreover, the result can be used to give a good prediction to the achievable average tracking performance and control energy for practical system designs. The validity of obtained results can be illustrated by the simulation research.
文摘In this paper the Kiefer-Wolfowitz (KW) procedure for searching the extremum of the regression function as well as the Robbins-Monro (RM) procedure for solving the regression equation are modified in order that they can be applied to the case when the measurement errors form an ARMA process. Simple conditions are given to guarantee their convergence to the extremum and the root of regression function respectively by using a new approach combining both the probabilistic method and the ordinary differential equation (ODE) method. The results given here are better than the well-known ones even if the measurement error is the martingale difference sequence.
文摘The influences of joints' error, motion history, speed and robot posture on repeatability are analyzed and the mathematical expressions of the quantity, direction and distribution of the stochastic positional error are derived . Using this model the magnitude and direction of the stochastic positional error after any motion can be preestimated and compensated .