Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and de...Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and deformations induced by underground and open pit mining,near surface excavation of tunnel and so on.展开更多
This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is ...This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement.展开更多
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to...In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.展开更多
In order to study the uplifting effect of compensation grouting on ground surface and the upper structures,the ground heave induced by stratum expansion was considered as a stochastic process and the stochastic medium...In order to study the uplifting effect of compensation grouting on ground surface and the upper structures,the ground heave induced by stratum expansion was considered as a stochastic process and the stochastic medium theory was applied to determine the heave and deformation of ground surface under uniform and non-uniform expansion models of spherical grout bulb.The corresponding calculating formulas and simplified methods were derived based on the hypotheses of radial expansion.Then,a numerical model,in which radial velocity was imposed on the outer nodes of grout bulb to simulate the expansion process reaching a required volume strain,was established simultaneously.This new method avoids repeated trial calculation needed in the traditional method which applies a "fictitious" expanding pressure in the grouting elements.The results show that the numerical solutions have good consistency with the theoretical ones.Meanwhile,though the heave resulting from non-uniform expansion is larger than that from uniform expansion for shallow grouting,both of them tend to be convergent with the increasing of grouting depth.展开更多
Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contrac...Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.展开更多
A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of p...A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction on mining subsidence and deformation.展开更多
In this paper, we first prove the existence and uniqueness of a general stochastic differential equation in finite dimension, then extend the result to the infinite dimension by the classical Galerkin method. As an ap...In this paper, we first prove the existence and uniqueness of a general stochastic differential equation in finite dimension, then extend the result to the infinite dimension by the classical Galerkin method. As an application, we prove the existence and uniqueness of the generalized stochastic porous medium equation perturbed by Levy process.展开更多
文摘Research on the stochastic theory and its application have been conducted in China for 40 years.This paper emphasizes on the basic theory of stochastic medium and its practice in predicting the ground movements and deformations induced by underground and open pit mining,near surface excavation of tunnel and so on.
基金supported by the National Natural Science Foundation of China(Grant Nos.51538001,51978019).
文摘This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金supported by the National Science Foundation of China(1067121290820302)the National Science Foundation of Hunan Province
文摘In this article,we first prove the existence and uniqueness of the solution to the stochastic generalized porous medium equation perturbed by Lévy process,and then show the exponential convergence of(pt)t≥0 to equilibrium uniform on any bounded subset in H.
基金Project(2007AA11Z134) supported by the National High Technology Research and Development Program of ChinaProject(10JJ4035) supported by the Natural Science Foundation of Hunan Province,China Project(2010ybfz046) supported by the Fund of Excellent Doctoral Dissertation of Central South University,China
文摘In order to study the uplifting effect of compensation grouting on ground surface and the upper structures,the ground heave induced by stratum expansion was considered as a stochastic process and the stochastic medium theory was applied to determine the heave and deformation of ground surface under uniform and non-uniform expansion models of spherical grout bulb.The corresponding calculating formulas and simplified methods were derived based on the hypotheses of radial expansion.Then,a numerical model,in which radial velocity was imposed on the outer nodes of grout bulb to simulate the expansion process reaching a required volume strain,was established simultaneously.This new method avoids repeated trial calculation needed in the traditional method which applies a "fictitious" expanding pressure in the grouting elements.The results show that the numerical solutions have good consistency with the theoretical ones.Meanwhile,though the heave resulting from non-uniform expansion is larger than that from uniform expansion for shallow grouting,both of them tend to be convergent with the increasing of grouting depth.
基金Project(51478478) supported by the National Natural Science Foundation of ChinaProject(IRT1296) supported by the Program for Changjiang Scholars and Innovative Research Team(PCSIRT) in University,China
文摘Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.
文摘A new probability function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction on mining subsidence and deformation.
基金Supported by National Nature Science Foundation of China (Grant Nos. 10671212, 90820302) and Fundamental Research Funds for the Central Universities (Grant No. CDJRC10100011) The authors thanks Professor Dong Zhao for his valuable discussions and the authors would like to express their sincere gratitude to the referee for valuable comments and careful reading. They also appreciate that this paper has been improved greatly by the referee's advice.
文摘In this paper, we first prove the existence and uniqueness of a general stochastic differential equation in finite dimension, then extend the result to the infinite dimension by the classical Galerkin method. As an application, we prove the existence and uniqueness of the generalized stochastic porous medium equation perturbed by Levy process.