The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabil...The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.展开更多
The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as ex...The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as exogenous noises, while the deterministic uncertainties are time invariant and appear as the unknown parameters which lie in a bounded interval. Based on a subdivision for the continuous interval, a robust adaptive controller is designed. The controller can not only realize the system output to track the desired output, but also learn a more accurate interval which contains the true value of the unknown parameter with a learning error given in advance. An example is given finally to demonstrate the effectiveness of the proposed method.展开更多
In this paper, the problem of stochastic L2 disturbance attenuation of the air-fuel ratio is investigated with consideration of cyclic variation of the residual gas fraction (RGF). A stochastic robust controller is ...In this paper, the problem of stochastic L2 disturbance attenuation of the air-fuel ratio is investigated with consideration of cyclic variation of the residual gas fraction (RGF). A stochastic robust controller is designed based on a discrete-time dynamic model in which the RGF is modeled as a stochastic process with Markovian property. Finally, the sampling process-based statistical analysis for the RGF and the validation of the proposed control law are presented through the experiments conducted on a gasoline engine test bench.展开更多
基金supported by the National Natural Science Foundation of China(607404306646087403160904060)
文摘The problem of robust H_∞ control for uncertain neutral stochastic systems with time-varying delay is discussed.The parameter uncertaintie is assumed to be time varying norm-bounded.First,the stochastic robust stabilization of the stochastic system without disturbance input is investigated by nonlinear matrix inequality method.Then,a full-order stochastic dynamic output feedback controller is designed by solving a bilinear matrix inequality(BMI),which ensures a prescribed stochastic robust H_∞ performance level for the resulting closed-loop system with nonzero disturbance input and for all admissible uncertainties.An illustrative example is provided to show the feasibility of the controller and the potential of the proposed technique.
基金supported by the National Natural Science Foundation of China(61273127U1534208)+2 种基金the Key Program of National Natural Science Foundation of China(61533014)the Key Laboratory for Fault Diagnosis and Maintenance of Spacecraft in Orbit(SDML-OF2015004)the Science and Technology Preject of Shaanxi Province(2016GY-108)
文摘The control problem for single-input single-output(SISO) systems in the presence of mixed uncertainties, both stochastic and deterministic uncertainties, is considered. The stochastic uncertainties are modeled as exogenous noises, while the deterministic uncertainties are time invariant and appear as the unknown parameters which lie in a bounded interval. Based on a subdivision for the continuous interval, a robust adaptive controller is designed. The controller can not only realize the system output to track the desired output, but also learn a more accurate interval which contains the true value of the unknown parameter with a learning error given in advance. An example is given finally to demonstrate the effectiveness of the proposed method.
文摘In this paper, the problem of stochastic L2 disturbance attenuation of the air-fuel ratio is investigated with consideration of cyclic variation of the residual gas fraction (RGF). A stochastic robust controller is designed based on a discrete-time dynamic model in which the RGF is modeled as a stochastic process with Markovian property. Finally, the sampling process-based statistical analysis for the RGF and the validation of the proposed control law are presented through the experiments conducted on a gasoline engine test bench.