期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Forecasting Energy Consumption Using a Novel Hybrid Dipper Throated Optimization and Stochastic Fractal Search Algorithm
1
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +1 位作者 Amel Ali Alhussan Marwa M.Eid 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2117-2132,共16页
The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in ma... The accurate prediction of energy consumption has effective role in decision making and risk management for individuals and governments.Meanwhile,the accurate prediction can be realized using the recent advances in machine learning and predictive models.This research proposes a novel approach for energy consumption forecasting based on a new optimization algorithm and a new forecasting model consisting of a set of long short-term memory(LSTM)units.The proposed optimization algorithm is used to optimize the parameters of the LSTM-based model to boost its forecasting accuracy.This optimization algorithm is based on the recently emerged dipper-throated optimization(DTO)and stochastic fractal search(SFS)algo-rithm and is referred to as dynamic DTOSFS.To prove the effectiveness and superiority of the proposed approach,five standard benchmark algorithms,namely,stochastic fractal search(SFS),dipper throated optimization(DTO),whale optimization algorithm(WOA),particle swarm optimization(PSO),and grey wolf optimization(GWO),are used to optimize the parameters of the LSTM-based model,and the results are compared with that of the proposed approach.Experimental results show that the proposed DDTOSFS+LSTM can accurately forecast the energy consumption with root mean square error RMSE of 0.00013,which is the best among the recorded results of the other methods.In addition,statistical experiments are conducted to prove the statistical difference of the proposed model.The results of these tests confirmed the expected outcomes. 展开更多
关键词 stochastic fractal search dipper throated optimization energy consumption long short-term memory prediction models
下载PDF
Deep Neural Network Architecture Search via Decomposition-Based Multi-Objective Stochastic Fractal Search
2
作者 Hongshang Xu Bei Dong +1 位作者 Xiaochang Liu Xiaojun Wu 《Intelligent Automation & Soft Computing》 2023年第11期185-202,共18页
Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puti... Deep neural networks often outperform classical machine learning algorithms in solving real-world problems.However,designing better networks usually requires domain expertise and consumes significant time and com-puting resources.Moreover,when the task changes,the original network architecture becomes outdated and requires redesigning.Thus,Neural Architecture Search(NAS)has gained attention as an effective approach to automatically generate optimal network architectures.Most NAS methods mainly focus on achieving high performance while ignoring architectural complexity.A myriad of research has revealed that network performance and structural complexity are often positively correlated.Nevertheless,complex network structures will bring enormous computing resources.To cope with this,we formulate the neural architecture search task as a multi-objective optimization problem,where an optimal architecture is learned by minimizing the classification error rate and the number of network parameters simultaneously.And then a decomposition-based multi-objective stochastic fractal search method is proposed to solve it.In view of the discrete property of the NAS problem,we discretize the stochastic fractal search step size so that the network architecture can be optimized more effectively.Additionally,two distinct update methods are employed in step size update stage to enhance the global and local search abilities adaptively.Furthermore,an information exchange mechanism between architectures is raised to accelerate the convergence process and improve the efficiency of the algorithm.Experimental studies show that the proposed algorithm has competitive performance comparable to many existing manual and automatic deep neural network generation approaches,which achieved a parameter-less and high-precision architecture with low-cost on each of the six benchmark datasets. 展开更多
关键词 Deep neural network neural architecture search multi-objective optimization stochastic fractal search DECOMPOSITION
下载PDF
Stochastic focusing search:a novel optimization algorithm for real-parameter optimization 被引量:3
3
作者 Zheng Yongkang Chen Weirong +1 位作者 Dai Chaohua Wang Weibo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第4期869-876,共8页
A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of hu... A novel optimization algorithm called stochastic focusing search (SFS) for the real-parameter optimization is proposed. The new algorithm is a swarm intelligence algorithm, which is based on simulating the act of human randomized searching, and the human searching behaviors. The algorithm's performance is studied using a challenging set of typically complex functions with comparison of differential evolution (DE) and three modified particle swarm optimization (PSO) algorithms, and the simulation results show that SFS is competitive to solve most parts of the benchmark problems and will become a promising candidate of search algorithms especially when the existing algorithms have some difficulties in solving certain problems. 展开更多
关键词 swarm intelligence stochastic focusing search real-parameter optimization human randomized searching particle swarm optimization.
下载PDF
A hybrid stochastic fractal search and pattern search technique based cascade PI-PD controller for automatic generation control of multi-source power systems in presence of plug in electric vehicles 被引量:1
4
作者 Sasmita Padhy Sidhartha Panda 《CAAI Transactions on Intelligence Technology》 2017年第1期12-25,共14页
A hybrid Stochastic Fractal Search plus Pattern Search (hSFS-PS) based cascade PI-PD controller is suggested in this paper for Automatic Generation Control (AGC) of thermal, hydro and gas power unit based power sy... A hybrid Stochastic Fractal Search plus Pattern Search (hSFS-PS) based cascade PI-PD controller is suggested in this paper for Automatic Generation Control (AGC) of thermal, hydro and gas power unit based power systems in presence of Plug in Electric Vehicles (PEV). Firstly, a single area multi-source power system consisting of thermal hydro and gas power plants is considered and parameters of Integral (I) controller is optimized by Stochastic FractaI Search (SFS) algorithm. The superiority of SFS algorithm over some recently proposed approaches such as optimal control, differential evolution and teaching learning based optimization techniques is demonstrated by comparing simulation results for the identical power system. To improve the system performance further, Pattern Search (PS) is subsequently employed. The study is further extended for different controllers like PI, PID, and cascaded PI-PD controller and the superiority of cascade PI-PD controller over conventional controllers is demonstrated. Then, cascade PI- PD controller parameters of AGC searched using the proposed hSFS-PS algorithm in presence of plug in electric vehicles. The study is also extended to an interconnected power system. It is seen from the comparative analysis that hSFS-PS tuned PI-PD controller in single and multi-area with multi sources improves the system frequency stability in complicated situations. Lastly, a three area interconnected system with PEVs with dissimilar cascade PI-PD controller in each area is considered and proposed hSFS- PS algorithm is used to tune the controller parameters in presence of nonlinearities like rate constraint of units, dead zone of governor and communication delay. 展开更多
关键词 Automatic generation control Cascade PI-PD controller stochastic fractal search Pattern search Plug in electric vehicles
下载PDF
Reactive Search Optimization;Application to Multiobjective Optimization Problems 被引量:1
5
作者 Amir Mosavi Atieh Vaezipour 《Applied Mathematics》 2012年第10期1572-1582,共11页
During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, i... During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, in the framework of stochastic local search optimization, learning and optimization has been deeply interconnected through interaction with the decision maker via the visualization approach of the online graphs. Consequently a number of complex optimization problems, in particular multiobjective optimization problems, arising in widely different contexts have been effectively treated within the general framework of RSO. In solving real-life multiobjective optimization problems often most emphasis are spent on finding the complete Pareto-optimal set and less on decision-making. However the com-plete task of multiobjective optimization is considered as a combined task of optimization and decision-making. In this paper, we suggest an interactive procedure which will involve the decision-maker in the optimization process helping to choose a single solution at the end. Our proposed method works on the basis of Reactive Search Optimization (RSO) algorithms and available software architecture packages. The procedure is further compared with the excising novel method of Interactive Multiobjective Optimization and Decision-Making, using Evolutionary method (I-MODE). In order to evaluate the effectiveness of both methods the well-known study case of welded beam design problem is reconsidered. 展开更多
关键词 stochastic Local search Real-Life Application Multi Criteria Decision Making Multiobjective Optimization Reactive search Optimization
下载PDF
Solving constrained portfolio optimization model using stochastic fractal search approach
6
作者 Mohammad Shahid Zubair Ashraf +1 位作者 Mohd Shamim Mohd Shamim Ansari 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第2期223-249,共27页
Purpose-Optimum utilization of investments has always been considered one of the most crucial aspects of capital markets.Investment into various securities is the subject of portfolio optimization intent to maximize r... Purpose-Optimum utilization of investments has always been considered one of the most crucial aspects of capital markets.Investment into various securities is the subject of portfolio optimization intent to maximize return at minimum risk.In this series,a population-based evolutionary approach,stochastic fractal search(SFS),is derived from the natural growth phenomenon.This study aims to develop portfolio selection model using SFS approach to construct an efficient portfolio by optimizing the Sharpe ratio with risk budgeting constraints.Design/methodology/approach-This paper proposes a constrained portfolio optimization model using the SFS approach with risk-budgeting constraints.SFS is an evolutionary method inspired by the natural growth process which has been modeled using the fractal theory.Experimental analysis has been conducted to determine the effectiveness of the proposed model by making comparisons with state-of-the-art from domain such as genetic algorithm,particle swarm optimization,simulated annealing and differential evolution.The real datasets of the Indian stock exchanges and datasets of global stock exchanges such as Nikkei 225,DAX 100,FTSE 100,Hang Seng31 and S&P 100 have been taken in the study.Findings-The study confirms the better performance of the SFS model among its peers.Also,statistical analysis has been done using SPSS 20 to confirm the hypothesis developed in the experimental analysis.Originality/value-In the recent past,researchers have already proposed a significant number of models to solve portfolio selection problems using the meta-heuristic approach.However,this is the first attempt to apply the SFS optimization approach to the problem. 展开更多
关键词 Portfolio optimization Risk-budgeting constraint Sharpe ratio Evolutionary algorithm stochastic fractal search
原文传递
Hybridized Artificial Neural Network for Automated Software Test Oracle
7
作者 K.Kamaraj B.Lanitha +2 位作者 S.Karthic P.N.Senthil Prakash R.Mahaveerakannan 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1837-1850,共14页
Software testing is the methodology of analyzing the nature of software to test if it works as anticipated so as to boost its reliability and quality.These two characteristics are very critical in the software applica... Software testing is the methodology of analyzing the nature of software to test if it works as anticipated so as to boost its reliability and quality.These two characteristics are very critical in the software applications of present times.When testers want to perform scenario evaluations,test oracles are generally employed in the third phase.Upon test case execution and test outcome generation,it is essential to validate the results so as to establish the software behavior’s correctness.By choosing a feasible technique for the test case optimization and prioritization as along with an appropriate assessment of the application,leads to a reduction in the fault detection work with minimal loss of information and would also greatly reduce the cost for clearing up.A hybrid Particle Swarm Optimization(PSO)with Stochastic Diffusion Search(PSO-SDS)based Neural Network,and a hybrid Harmony Search with Stochastic Diffusion Search(HS-SDS)based Neural Network has been proposed in this work.Further to evaluate the performance,it is compared with PSO-SDS based artificial Neural Network(PSO-SDS ANN)and Artificial Neural Network(ANN).The Misclassification of correction output(MCO)of HS-SDS Neural Network is 6.37 for 5 iterations and is well suited for automated testing. 展开更多
关键词 Test oracles neural network particle swarm optimization stochastic diffusion search harmony search
下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
8
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 SELF-ADAPTIVE numerical optimization evolutionary al-gorithm stochastic search algorithm.
下载PDF
Electromagnetism-Like Mechanism Algorithm with New Charge Formula for Optimization 被引量:1
9
作者 YIN Feng KANG Yongliang +1 位作者 ZHANG Dongbo QIU Jie 《Journal of Donghua University(English Edition)》 CAS 2021年第3期231-239,共9页
The electromagnetism-like(EM)algorithm is a meta-heuristic optimization algorithm,which uses a novel searching mechanism called attraction-repulsion between charged particles.It is worth pointing out that there are tw... The electromagnetism-like(EM)algorithm is a meta-heuristic optimization algorithm,which uses a novel searching mechanism called attraction-repulsion between charged particles.It is worth pointing out that there are two potential problems in the calculation of particle charge by the original EM algorithm.One of the problems is that the information utilization rate of the population is not high,and the other problem is the decline of population diversity when the population size is much greater than the dimension of the problem.In contrast,it is more fully to exploit the useful search information based on the proposed new quadratic formula for charge calculation in this paper.Furthermore,the population size was introduced as a new multiplier term to improve the population diversity.In the end,numerical experiments were used to verify the performance of the proposed method,including a comparison with the original EM algorithm and other well-known methods such as artificial bee colony(ABC),and particle swarm optimization(PSO).The results showed the effectiveness of the proposed algorithm. 展开更多
关键词 electromagnetism-like(EM)mechanism stochastic search method constrained optimization global optimization attraction-repulsion
下载PDF
Optimal Combined Heat and Power Economic Dispatch Using Stochastic Fractal Search Algorithm 被引量:3
10
作者 Muwaffaq I.Alomoush 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第2期276-286,共11页
Combined heat and power(CHP)generation is a valuable scheme for concurrent generation of electrical and thermal energies.The interdependency of power and heat productions in CHP units introduces complications and non-... Combined heat and power(CHP)generation is a valuable scheme for concurrent generation of electrical and thermal energies.The interdependency of power and heat productions in CHP units introduces complications and non-convexities in their modeling and optimization.This paper uses the stochastic fractal search(SFS)optimization technique to treat the highly non-linear CHP economic dispatch(CHPED)problem,where the objective is to minimize the total operation cost of both power and heat from generation units while fulfilling several operation interdependent limits and constraints.The CHPED problem has bounded feasible operation regions and many local minima.The SFS,which is a recent metaheuristic global optimization solver,outranks many current reputable solvers.Handling constraints of the CHPED is achieved by employing external penalty parameters,which penalize infeasible solution during the iterative process.To confirm the strength of this algorithm,it has been tested on two different test systems that are regularly used.The obtained outcomes are compared with former outcomes achieved by many different methods reported in literature of CHPED.The results of this work affirm that the SFS algorithm can achieve improved near-global solution and compare favorably with other commonly used global optimization techniques in terms of the quality of solution,handling of constraints and computation time. 展开更多
关键词 Combined heat and power(CHP) economic dispatch global optimization metaheuristic algorithms non-convex optimization problem power systems stochastic fractal search
原文传递
Solving the Euclidean Steiner Minimum Tree Using Cellular Stochastic Diffusion Search Algorithm 被引量:2
11
作者 张瑾 赵雅靓 马良 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第6期734-741,共8页
The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem.Because of the intrinsic characteristic of the hard computability,this problem cannot be solved accurately by effici... The Euclidean Steiner minimum tree problem is a classical NP-hard combinatorial optimization problem.Because of the intrinsic characteristic of the hard computability,this problem cannot be solved accurately by efficient algorithms up to now.Due to the extensive applications in real world,it is quite important to find some heuristics for it.The stochastic diffusion search algorithm is a newly population-based algorithm whose operating mechanism is quite different from ordinary intelligent algorithms,so this algorithm has its own advantage in solving some optimization problems.This paper has carefully studied the stochastic diffusion search algorithm and designed a cellular automata stochastic diffusion search algorithm for the Euclidean Steiner minimum tree problem which has low time complexity.Practical results show that the proposed algorithm can find approving results in short time even for the large scale size,while exact algorithms need to cost several hours. 展开更多
关键词 Euclidean Steiner minimum tree stochastic diffusion search cellular automata
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部