The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil...The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets.展开更多
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest...The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction.展开更多
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ...The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.展开更多
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris...The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.展开更多
This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in Chi...This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.展开更多
Stock market prediction has long been an area of interest for investors, traders, and researchers alike. Accurate forecasting of stock prices is crucial for financial decision-making and risk management. This paper pr...Stock market prediction has long been an area of interest for investors, traders, and researchers alike. Accurate forecasting of stock prices is crucial for financial decision-making and risk management. This paper presents a novel approach to predict stock prices by integrating Autoregressive Integrated Moving Average (ARIMA) and Exponential smoothing and Machine Learning (ML) techniques. Our study aims to enhance the predictive accuracy of stock price forecasting, which can significantly impact investment strategies and economic growth in this research paper implement the ARIMAML proposed method to predict the stock prices for Investment Bank of Iraq.展开更多
This study examines the relationship between Environmental,Social,and Governance(ESG)factors and stock prices as well as investment performance.ESG factors have become increasingly relevant in investment decisions as ...This study examines the relationship between Environmental,Social,and Governance(ESG)factors and stock prices as well as investment performance.ESG factors have become increasingly relevant in investment decisions as investors prioritize companies with sustainable practices.Using a sample of publicly-traded companies,this research analyzes the impact of ESG factors on stock prices and investment returns.The findings suggest that companies with strong ESG performance tend to have higher stock prices and better investment performance than those with weak ESG performance.The study also highlights the significance of the individual components of ESG,such as environmental policies and corporate governance practices,on stock prices and investment returns.Overall,this research provides valuable insights for investors seeking to incorporate ESG factors into their investment decision-making processes.展开更多
Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(ex...Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.展开更多
The massive increase in the volume of data generated by individuals on social media microblog platforms such as Twitter and Reddit every day offers researchers unique opportunities to analyze financial markets from ne...The massive increase in the volume of data generated by individuals on social media microblog platforms such as Twitter and Reddit every day offers researchers unique opportunities to analyze financial markets from new perspec-tives.The meme stock mania of 2021 brought together stock traders and investors that were also active on social media.This mania was in good part driven by retail investors’discussions on investment strategies that occurred on social media plat-forms such as Reddit during the COVID-19 lockdowns.The stock trades by these retail investors were then executed using services like Robinhood.In this paper,machine learning models are used to try and predict the stock price movements of two meme stocks:GameStop($GME)and AMC Entertainment($AMC).Two sentiment metrics of the daily social media discussions about these stocks on Red-dit are generated and used together with 85 other fundamental and technical indi-cators as the feature set for the machine learning models.It is demonstrated that through the use of a carefully chosen mix of a meme stock’s fundamental indica-tors,technical indicators,and social media sentiment scores,it is possible to pre-dict the stocks’next-day closing prices.Also,using an anomaly detection model,and the daily Reddit discussions about a meme stock,it was possible to identify potential market manipulators.展开更多
This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on wh...This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on whether Bitcoin prices contain useful information for the volatility of US stock returns,particularly at the sectoral level of data.We specifically assess Bitcoin prices’ability to predict the volatility of US composite and sectoral stock indices using both in-sample and out-of-sample analyses over multiple forecast horizons,based on daily data from November 22,2017,to December,30,2021.The findings show that Bitcoin prices have significant predictive power for US stock volatility,with an inverse relationship between Bitcoin prices and stock sector volatility.Regardless of the stock sectors or number of forecast horizons,the model that includes Bitcoin prices consistently outperforms the benchmark historical average model.These findings are independent of the volatility measure used.Using Bitcoin prices as a predictor yields higher economic gains.These findings emphasize the importance and utility of tracking Bitcoin prices when forecasting the volatility of US stock sectors,which is important for practitioners and policymakers.展开更多
In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent mo...In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.展开更多
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin...Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.展开更多
Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally ...Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.展开更多
Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the...Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the stock status of S. galilaeus. Sampling was conducted from March, 2021 to February 2022 based on commercial fish catches to analyze growth parameters, first sexual maturity size and harvest status of the stock. A total of 572 specimens including 297 females and 275 males were examined. The stock assessment was performed by using the Length based Bayesian method of Biomass (LBB) and that of growth by the ELEFAN method. The growth parameters showed a seasonality of growth and females appeared to grow faster than males. On the other hand, males had a greater asymptotic length than females. Results on the estimated length of fish at first maturity showed that females firstly reached the maturity compared to males. The relative biomass (B/B<sub>0</sub>) estimated for the stock was higher than the relative biomass that produces maximum sustainable yield (B<sub>MSY</sub>/B<sub>0</sub>) indicating healthy biomass. In addition, the length at first sexual maturity was less than the length at the first catch, indicating the absence of overfishing of growth. In addition, extending the study to the various stocks of the reservoir would be important for the sustainable management of the Samandeni high economic fishing area.展开更多
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f...Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.展开更多
This study delves into the multifaceted impact of price hikes on the standard of living in Bangladesh, with a specific focus on distinct socioeconomic segments. Amidst Bangladesh’s economic growth, the challenges of ...This study delves into the multifaceted impact of price hikes on the standard of living in Bangladesh, with a specific focus on distinct socioeconomic segments. Amidst Bangladesh’s economic growth, the challenges of rising inflation and increased living costs have become pressing concerns. Employing a mixed-methods approach combines quantitative data from a structured survey with qualitative insights from in-depth interviews and focused group discussions to analyze the repercussions of price hikes. Stratified random sampling ensures representation across affluent, middle-class, and economically disadvantaged groups. Utilizing data [1] from 2020 to November 2023 on the yearly change in retail prices of essential commodities, analysis reveals significant demographic shifts, occupational changes, and altered asset ownership patterns among households. The vulnerable population, including daily wage laborers and low-income individuals, is disproportionately affected by adjustments in consumption, income generation, and living arrangements. Statistical analyses, including One-Way ANOVA and Paired Sample t-tests, illuminate significant mean differences in strategies employed during price hikes. Despite challenges, the prioritization of education remains evident, emphasizing its resilience in the face of economic hardships. The result shows that price hikes, especially in essential items, lead to substantial adjustments in living costs, with items like onions, garlic, and ginger experiencing significant increases of 275%, 108%, and 483%, respectively.展开更多
Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various ...Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.展开更多
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the...Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.展开更多
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ...The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.展开更多
文摘The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets.
文摘The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction.
文摘The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions.
文摘The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector.
基金supports from the National Natural Science Foundation of China(under Grants No.72073105,71903002,and 71774122)the Natural Science Foundation of Anhui Province,China(under Grant No.1908085QG309)are greatly acknowledged.
文摘This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.
文摘Stock market prediction has long been an area of interest for investors, traders, and researchers alike. Accurate forecasting of stock prices is crucial for financial decision-making and risk management. This paper presents a novel approach to predict stock prices by integrating Autoregressive Integrated Moving Average (ARIMA) and Exponential smoothing and Machine Learning (ML) techniques. Our study aims to enhance the predictive accuracy of stock price forecasting, which can significantly impact investment strategies and economic growth in this research paper implement the ARIMAML proposed method to predict the stock prices for Investment Bank of Iraq.
文摘This study examines the relationship between Environmental,Social,and Governance(ESG)factors and stock prices as well as investment performance.ESG factors have become increasingly relevant in investment decisions as investors prioritize companies with sustainable practices.Using a sample of publicly-traded companies,this research analyzes the impact of ESG factors on stock prices and investment returns.The findings suggest that companies with strong ESG performance tend to have higher stock prices and better investment performance than those with weak ESG performance.The study also highlights the significance of the individual components of ESG,such as environmental policies and corporate governance practices,on stock prices and investment returns.Overall,this research provides valuable insights for investors seeking to incorporate ESG factors into their investment decision-making processes.
基金Under the auspices of National Natural Science Foundation of China(No.42071222,41771194)。
文摘Urban shrinkage has emerged as a widespread phenomenon globally and has a significant impact on land,particularly in terms of land use and price.This study focuses on 2851 county-level cities in China in 2005–2018(excluding Hong Kong,Macao,Taiwan,and‘no data’areas in Qinhai-Tibet Plateau)as the fundamental units of analysis.By employing nighttime light(NTL)data to identify shrinking cities,the propensity score matching(PSM)model was used to quantitatively examine the impact of shrinking cities on land prices,and evaluate the magnitude of this influence.The findings demonstrate the following:1)there were 613 shrinking cities in China,with moderate shrinkage being the most prevalent and severe shrinkage being the least.2)Regional disparities are evident in the spatial distribution of shrinking cities,especially in areas with diverse terrain.3)The spatial pattern of land price exhibits a significant correlated to the economic and administrative levels.4)Shrinking cities significantly negatively impact on the overall land price(ATT=–0.1241,P<0.05).However,the extent of the effect varies significantly among different spatial regions.This study contributes novel insights into the investigation of land prices and shrinking cities,ultimately serving as a foundation for government efforts to promote the sustainable development of urban areas.
文摘The massive increase in the volume of data generated by individuals on social media microblog platforms such as Twitter and Reddit every day offers researchers unique opportunities to analyze financial markets from new perspec-tives.The meme stock mania of 2021 brought together stock traders and investors that were also active on social media.This mania was in good part driven by retail investors’discussions on investment strategies that occurred on social media plat-forms such as Reddit during the COVID-19 lockdowns.The stock trades by these retail investors were then executed using services like Robinhood.In this paper,machine learning models are used to try and predict the stock price movements of two meme stocks:GameStop($GME)and AMC Entertainment($AMC).Two sentiment metrics of the daily social media discussions about these stocks on Red-dit are generated and used together with 85 other fundamental and technical indi-cators as the feature set for the machine learning models.It is demonstrated that through the use of a carefully chosen mix of a meme stock’s fundamental indica-tors,technical indicators,and social media sentiment scores,it is possible to pre-dict the stocks’next-day closing prices.Also,using an anomaly detection model,and the daily Reddit discussions about a meme stock,it was possible to identify potential market manipulators.
文摘This paper is motivated by Bitcoin’s rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets.It is also motivated by a lack of empirical studies on whether Bitcoin prices contain useful information for the volatility of US stock returns,particularly at the sectoral level of data.We specifically assess Bitcoin prices’ability to predict the volatility of US composite and sectoral stock indices using both in-sample and out-of-sample analyses over multiple forecast horizons,based on daily data from November 22,2017,to December,30,2021.The findings show that Bitcoin prices have significant predictive power for US stock volatility,with an inverse relationship between Bitcoin prices and stock sector volatility.Regardless of the stock sectors or number of forecast horizons,the model that includes Bitcoin prices consistently outperforms the benchmark historical average model.These findings are independent of the volatility measure used.Using Bitcoin prices as a predictor yields higher economic gains.These findings emphasize the importance and utility of tracking Bitcoin prices when forecasting the volatility of US stock sectors,which is important for practitioners and policymakers.
文摘In this paper,we apply the spatial panel model to explore the relationship between the dynamic of two types of crude oil prices(WTI and Brent crude oil)and their refined products over time.Considering the turbulent months of 2011,when Cushing Oklahoma had reached capacity and the crude oil export ban removal in 2015 as breakpoints,we apply this method both in the full sample and the three resultant regimes.First,results suggest our results show that both WTI and Brent display very similar behaviour with the refined products.Second,when attending to each regime,results derived from the first and third regimes are quite similar to the full sample results.Therefore,during the second regime,Brent crude oil became the benchmark in the petrol market,and it influenced the distillate products.Furthermore,our model can let us determine the price-setters and price-followers in the price formation mechanism through refined products.These results possess important considerations to policymakers and the market participants and the price formation.
基金funded by National Key Research and Development Program(2023YFD220080430&2017YFD0600404)。
文摘Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
基金funded by the Comision Sectorial de Investigacion Cientifica(CSIC)[ID-501]the Agencia Nacional de Investigacion e Innovacion(ANII)[POS_EXT_2023_1_174913]。
文摘Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario.
文摘Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the stock status of S. galilaeus. Sampling was conducted from March, 2021 to February 2022 based on commercial fish catches to analyze growth parameters, first sexual maturity size and harvest status of the stock. A total of 572 specimens including 297 females and 275 males were examined. The stock assessment was performed by using the Length based Bayesian method of Biomass (LBB) and that of growth by the ELEFAN method. The growth parameters showed a seasonality of growth and females appeared to grow faster than males. On the other hand, males had a greater asymptotic length than females. Results on the estimated length of fish at first maturity showed that females firstly reached the maturity compared to males. The relative biomass (B/B<sub>0</sub>) estimated for the stock was higher than the relative biomass that produces maximum sustainable yield (B<sub>MSY</sub>/B<sub>0</sub>) indicating healthy biomass. In addition, the length at first sexual maturity was less than the length at the first catch, indicating the absence of overfishing of growth. In addition, extending the study to the various stocks of the reservoir would be important for the sustainable management of the Samandeni high economic fishing area.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant ZDBS-LY-DQC019)the National Key Research and Development Program of China(2023YFE0124300)+4 种基金the National Natural Science Foundation of China(32301344)Major Program of Institute of Applied EcologyChinese Academy of Sciences(IAEMP202201)supported by grants from the U.S.National Science Foundation(DEB 2240431)the Seeding Projects for Enabling Excellence and Distinction(SPEED)Program at Washington University in St.Louis。
文摘Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.
文摘This study delves into the multifaceted impact of price hikes on the standard of living in Bangladesh, with a specific focus on distinct socioeconomic segments. Amidst Bangladesh’s economic growth, the challenges of rising inflation and increased living costs have become pressing concerns. Employing a mixed-methods approach combines quantitative data from a structured survey with qualitative insights from in-depth interviews and focused group discussions to analyze the repercussions of price hikes. Stratified random sampling ensures representation across affluent, middle-class, and economically disadvantaged groups. Utilizing data [1] from 2020 to November 2023 on the yearly change in retail prices of essential commodities, analysis reveals significant demographic shifts, occupational changes, and altered asset ownership patterns among households. The vulnerable population, including daily wage laborers and low-income individuals, is disproportionately affected by adjustments in consumption, income generation, and living arrangements. Statistical analyses, including One-Way ANOVA and Paired Sample t-tests, illuminate significant mean differences in strategies employed during price hikes. Despite challenges, the prioritization of education remains evident, emphasizing its resilience in the face of economic hardships. The result shows that price hikes, especially in essential items, lead to substantial adjustments in living costs, with items like onions, garlic, and ginger experiencing significant increases of 275%, 108%, and 483%, respectively.
基金supported in part by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China,under Grant J2022011.
文摘Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users,the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies.For this purpose,a power grid-flexible load bilevel model is constructed based on dynamic pricing,where the leader is the dispatching center and the lower-level flexible load acts as the follower.Initially,an upper-level day-ahead dispatching model for the power grid is established,considering the lowest power grid dispatching cost as the objective function and incorporating the power grid-side constraints.Then,the lower level comprehensively considers the load characteristics of industrial load,energy storage,and data centers,and then establishes a lower-level flexible load operation model with the lowest user power-consuming cost as the objective function.Finally,the proposed method is validated using the IEEE-118 system,and the findings indicate that the dynamic pricing mechanism for peaking shaving and valley filling can effectively guide users to respond actively,thereby reducing the peak-valley difference and decreasing users’purchasing costs.
基金the National Natural Science Foundation of China(Grant Nos.32102310,32202484,and 32072520)the Shandong Key Research and Development Program,China(Grant Nos.2021LZGC007 and 2022TZXD009).
文摘Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.
基金funded by the Major Humanities and Social Sciences Research Projects in Zhejiang higher education institutions,grant number 2023QN082,awarded to Cheng ZhaoThe National Natural Science Foundation of China also provided funding,grant number 61902349,awarded to Cheng Zhao.
文摘The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits.