期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Responses of soil stoichiometry and soil enzyme activities in the different distance around opencast coal mine of the Hulun Buir Grassland of China
1
作者 Yinli Bi Nan Guo +2 位作者 Yanxu Zhang Xianglei Li Ziheng Song 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期221-231,共11页
The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were establis... The objectives of this study were to explore the changes in soil stoichiometry and enzyme activities at different distances from an opencast coal mine in the Hulun Buir Grassland of China. Four transects were established on north and east sides of the opencast coal mining area, and samples were collected at 50 m, 550 m, and 1550 m from the pit on each transect. Control samples were collected from a grassland station 8 km from the opencast coal mining area that was not disturbed by mining. Four replicate soil samples were collected at each point on the four transects. Soil physicochemical properties and enzyme activities were determined, and correlations between soil properties and stoichiometric ratios and enzyme activities were explored using redundancy analysis. The increase in distance from mining did not significantly affect soil properties, although soil urease activity was significantly lower than that of the control area. Soil properties 1550 m from the mine pit were similar to those at the grassland control. In addition, soil total nitrogen had the greatest effect on soil stoichiometry, and soil total potassium had the greatest effect on soil enzyme activities. Coal dust from opencast mining might be the main factor affecting soil stoichiometry and enzyme activities. The results of this study provide direction for the next step in studying the influence of mining areas on soil properties and processes. 展开更多
关键词 Opencast coal mine Soil stoichiometry Soil enzyme activities DISTANCE GRASSLAND
下载PDF
Response of plant,litter,and soil C:N:P stoichiometry to growth stages in Quercus secondary forests on the Loess Plateau,China
2
作者 Juanjuan Zhang Xinyang Li +4 位作者 Meng Chen Linjia Huang Ming Li Xu Zhang Yang Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第3期595-607,共13页
Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In ... Ecological stoichiometry is an important indicator of biogeochemical cycles and nutrient limitations in terrestrial ecosystems.However,little is known about the response of ecological stoichiometry to plant growth.In this study,carbon(C),nitrogen(N),and phosphorus(P)concentrations were evaluated in plant tissues(trees,shrubs,and herbs),litter,and soil of young(≤40-year-old),middle-aged(41–60-year-old),near-mature(61–80-year-old),and mature(81–120-year-old)Quercus secondary forests on the Loess Plateau,China.Vegetation composition,plant biomass,and C stock were determined to illustrate their interaction with stoichiometry.Only tree biomass C signifi cantly increased with stand development.Leaf N and trunk P concentrationsgenerally increased,but branch P decreased with growth stage.Fine roots had the highest C and P concentrations at the middle-aged stage.In contrast,shrubs,herbs,litter,and soil C:N:P stoichiometry did not change signifi cantly during stand development.Leaf N and P were positively correlated with soil C,N,P,and their ratios.However,there was no signifi cant correlation between litter and leaves in terms of C:N:P stoichiometry.A redundancy analysis showed that soil N best explained leaf N and P variance,and tree biomass and C stock were related to biotic factors such as tree age and shrub biomass.Hierarchical partitioning analysis indicated that,compared with soil or litter variables,stand age only accounted for a relatively small proportion of leaf C,N,and P variation.Thus,secondary Quercus ecosystems might have inherent ability to maintain sensitive responses of metabolically active organs to environmental factors during stand aging.The results of this work help to elucidate the biogeochemical cycling of secondary forest ecosystems in tree development,provide novel insights into the adaptation strategies of plants in diff erent organs and growth stages,and could be used to guide fertilization programs and optimize forest structure. 展开更多
关键词 Ecological stoichiometry Tree biomass C stock Understory plant Age Stand development
下载PDF
Research on Stoichiometry of Early-spring Herbs Functional Group in the Subtropical Artificial Wetland
3
作者 牛晓音 常杰 +1 位作者 葛滢 郑家文 《Agricultural Science & Technology》 CAS 2011年第8期1182-1185,1190,共5页
[Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammoni... [Objective]The aim was to carry out stoichiometry on the early-spring herbs functional group in subtropical artificial wetland.[Method]UV-Vis spectrophotometer was used for the determination of nitrate-nitrogen,ammonium nitrogen and phosphorus concentrations.Potassium persulfate absorptiometry was used for the measurement of total N content,while the flame photometer was used to detect the potassium and sodium concentration in plants.All the nutrient determination of plant samples were repeated for four times.[Result]The four nutrient concentrations in almost all samples were in the normal range of natural plant nutrition concentrations;in early-spring herbs functional groups,different species showed diversity on the nutrient concentrations;plant height had no significant effect on the nutrient concentrations in plants;the nutrient concentrations of non-grass group plants were higher than that of grass group plants;the nutrient concentrations of the annual herb were higher than that of perennial herbs.[Conclusion]The study had provided basis for the understanding of the effects of changes in nutritional conditions on species diversity,community structure and succession of the system. 展开更多
关键词 Early-spring herbs Functional group BIODIVERSITY Element stoichiometry
下载PDF
Leaf N and P stoichiometry of 57 plant species in the Karamori Mountain Ungulate Nature Reserve,Xinjiang,China 被引量:18
4
作者 TAO Ye WU Ganlin +1 位作者 ZHANG Yuanming ZHOU Xiaobing 《Journal of Arid Land》 SCIE CSCD 2016年第6期935-947,共13页
Nitrogen (N) and phosphorus (P) are the major nutrients that constrain plant growth and development, as well as the structure and function of ecosystems. Hence, leaf N and P patterns can contribute to a deep under... Nitrogen (N) and phosphorus (P) are the major nutrients that constrain plant growth and development, as well as the structure and function of ecosystems. Hence, leaf N and P patterns can contribute to a deep understanding of plant nutrient status, nutrient limitation type of ecosystems, plant life-history strategy and differentiation of functional groups. However, the status and pattern of leaf N and P stoichiometry in N-deficiency desert ecosystems remain unclear. Under this context, the leaf samples from 57 plant species in the Karamori Mountain Ungulate Nature Reserve, eastern Junggar Desert, China were investigated and the patterns and interrelations of leaf N and P were comparatively analyzed. The results showed that the average leaf N concentration, P concentration, and N:P ratio were 30.81 mg/g, 1.77 mg/g and 17.72, respectively. This study found that the leaf N concentration and N:P ratio were significantly higher than those of studies conducted at global, national and regional scales; however, the leaf P concentration was at moderate level. Leaf N concentration was allometrically correlated with leaf P and N:P ratio across all species. Leaf N, P concentrations and N:P ratio differed to a certain extent among plant functional groups. C4 plants and shrubs, particularly shrubs with assimilative branches, showed an obviously lower P concentration than those of C3 plants, herbs and shrubs without assimilative branches. Shrubs with assimilative branches also had lower N concentration. Fabaceae plants had the highest leaf N, P concentrations (as well as Asteraceae) and N:P ratio; other families had a similar N, P-stoichiometry. The soil in this study was characterized by a lack of N (total N:P ratio was 0.605), but had high N availability compared with P (i.e. the available N:P ratio was 1.86). This might explain why plant leaves had high N concentration (leaf N:P ratio〉16). In conclusion, the desert plants in the extreme environment in this study have formed their intrinsic and special stoichiometric characteristics in relation to their life-history strategy. 展开更多
关键词 leaf stoichiometry desert plant functional group nutrient limitation Junggar Desert Karamori Mountain
下载PDF
Degradation induces changes in the soil C:N:P stoichiometry of alpine steppe on the Tibetan Plateau 被引量:13
5
作者 ZHANG Zhen-chao HOU Ge +2 位作者 LIU Miao WEI Tian-xing SUN Jian 《Journal of Mountain Science》 SCIE CSCD 2019年第10期2348-2360,共13页
Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing... Due to the Tibetan Plateau’s unique high altitude and low temperature climate conditions,the region’s alpine steppe ecosystem is highly fragile and is suffering from severe degradation under the stress of increasing population,overgrazing,and climate change.The soil stoichiometry,a crucial part of ecological stoichiometry,provides a fundamental approach for understanding ecosystem processes by examining the relative proportions and balance of the three elements.Understanding the impact of degradation on the soil stoichiometry is vital for conservation and management in the alpine steppe on the Tibetan Plateau.This study aims to examine the response of soil stoichiometry to degradation and explore the underlying biotic and abiotic mechanisms in the alpine steppe.We conducted a field survey in a sequent degraded alpine steppe with seven levels inNorthern Tibet.The plant species,aboveground biomass,and physical and chemical soil properties such as the moisture content,temperature,pH,compactness,total carbon(C),total nitrogen(N),and total phosphorus(P)were measured and recorded.The results showed that the contents of soil C/N,C/P,and N/P consistently decreased along intensifying degradation gradients.Using regression analysis and a structural equation model(SEM),we found that the C/N,C/P,and N/P ratios were positively affected by the soil compactness,soil moisture content and species richness of graminoids but negatively affected by soil pH and the proportion of aboveground biomass of forbs.The soil temperature had a negative effect on the C/N ratio but showed positive effect on the C/P and N/P ratios.The current study shows that degradation-induced changes in abiotic and biotic conditions such as soil warming and drying,which accelerated the soil organic carbon mineralization,as well as the increase in the proportion of forbs,whichwere difficult to decompose and input less organic carbon into soil,resulted in the decreases in soil C/N,C/P,and N/P contents to a great extent.Our results provide a sound basis for sustainable conservation and management of the alpine steppe. 展开更多
关键词 Tibetan Plateau ALPINE STEPPE DEGRADATION Soil stoichiometry C/N C/P N/P
下载PDF
Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys 被引量:8
6
作者 Yuan Li Yang Tao Quan Huo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第1期86-93,共8页
To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were stud... To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30)x (x=0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50-yCuyMn0.30Al0.30)0.70 (y=0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase;in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Ther-modynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with in-creasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ame-liorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes. 展开更多
关键词 hydrogen storage alloys electrode materials stoichiometry SUBSTITUTION phase structure thermodynamic properties electro-chemical properties
下载PDF
Carbon,nitrogen and phosphorus stoichiometry in Pinus tabulaeformis forest ecosystems in warm temperate Shanxi Province,north China 被引量:7
7
作者 Ning Wang Fengzhen Fu +1 位作者 Baitian Wang Ruijun Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第6期1665-1673,共9页
Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the recipr... Although carbon(C), nitrogen(N), and phosphorous(P) stoichiometric ratios are considered good indicators of nutrient excess/limitation and thus of ecosystem health, few reports have discussed the trends and the reciprocal effects of C:N:P stoichiometry in plant–litter–soil systems. The present study analyzed C:N:P ratios in four age groups of Chinese pine, Pinus tabulaeformis Carr., forests in Shanxi Province, China: plantation young forests(AY,<20 year-old); plantation middle-aged forests(AM, 21–30 year-old); natural young forests(NY,<30 year-old); and natural middle-aged forests(NM,31–50 year-old). The average C:N:P ratios calculated for tree, shrub, and herbaceous leaves, litter, and soil(0–100 cm) were generally higher in NY followed by NM,AM, and AY. C:N and C:P ratios were higher in litter than in leaves and soils, and reached higher values in the litter and leaves of young forests than in middle-aged forests;however, C:N and C:P ratios were higher in soils of middle-aged forests than in young forests. N:P ratios were higher in leaves than in litter and soils regardless of stand age; the consistent N:P<14 values found in all forests indicated N limitations. With plant leaves, C:P ratios were highest in trees, followed by herbs and shrubs, indicating a higher efficiency in tree leaf formation. C:N ratios decreased with increasing soil depth, whereas there was no trend for C:P and N:P ratios. C:N:P stoichiometry of forest foliage did not exhibit a consistent variation according to stand age. Research on the relationships between N:P, and P, N nutrient limits and the characteristics of vegetation nutrient adaptation need to be continued. 展开更多
关键词 Pinus tabulaeformis Carr. Forest ecosystem Content of carbon Nitrogen and phosphorus Ecological stoichiometry Warm temperate zone China
下载PDF
Impact of vegetation succession on leaf-litter-soil C:N:P stoichiometry and their intrinsic relationship in the Ziwuling Area of China’s Loess Plateau 被引量:8
8
作者 Zongfei Wang Fenli Zheng 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期697-711,共15页
Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with su... Long-term natural vegetation succession plays a substantial role in the accumulation and distribution of plant and soil C:N:P stoichiometry.However,how plant and soil C:N:P relationships or ratios change along with successional stages over a century in the severely eroded areas remain unclear.These were measured over a 100-year natural succession in five successional stages from annual grasses to climax forests.The results show that natural succession had significant effects on carbon(C),nitrogen(N)and phosphorous(P)concentrations in leaf-litter-soil and their ratios in severely eroded areas.Nitrogen concentrations and N:P ratios in leaf and litter increased from annual grasses to the shrub stage and then decreased in the late successional forest stages.Leaf P levels decreased from annual grasses to shrub stages and did not significantly change during late successional stages.Litter P concentration decreased in the early successional stages and increased during late successional stages,with no overall significant change.Soil C and N concentrations and C:N,C:P and N:P ratios increased with successional stages.Soil C and N concentrations decreased with the increasing soil depth.Both were significantly different between any successional stages and controls(cropland)in the upper 10 cm and 10–20 cm soil layers.Leaf N:P ratios may be used to indicate nutrient limitations and this study suggests that plant growth during the grass stages was limited by N,during the shrub stage,by P,and during the forest stages,by both of N and P.In addition,there were close correlations between litter and leaf C:N:P ratios,soil and litter C and N levels,and C:P and N:P ratios.These results show that long-term natural vegetation succession is effective in restoring degraded soil properties and improving soil fertility,and provide insights into C:N:P relationships of leaf,litter and soil influenced by vegetation succession stage. 展开更多
关键词 Ecological stoichiometry Leaf-litter-soil Loess Platea Natural succession Nutrient elements
下载PDF
Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China 被引量:5
9
作者 LI Yonggang ZHOU Xiaobing ZHANG Yuanming 《Journal of Arid Land》 SCIE CSCD 2019年第4期579-594,共16页
Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribut... Desert mosses, which are important stabilizers in desert ecosystems, are distributed patchily under and between shrubs. Mosses differ from vascular plants in the ways they take up nutrients. Clarifying their distribution with ecological stoichiometry may be useful in explaining their mechanisms of living in different microhabitats. In this study, Syntrichia caninervis, the dominant moss species of moss crusts in the Gurbantunggut Desert, China, was selected to examine the study of stoichiometric characteristics in three microhabitats(under living shrubs, under dead shrubs and in exposed ground). The stoichiometry and enzyme activity of rhizosphere soil were analyzed. The plant function in the above-ground and below-ground parts of S. caninervis is significantly different, so the stoichiometry of the above-ground and below-ground parts might also be different. Results showed that carbon(C), nitrogen(N) and phosphorus(P) contents in the below-ground parts of S. caninervis were significantly lower than those in the above-ground parts. The highest N and P contents of the two parts were found under living shrubs and the lowest under dead shrubs. The C contents of the two parts did not differ significantly among the three microhabitats. In contrast, the ratios of C:N and C:P in the below-ground parts were higher than those in the above-ground parts in all microhabitats, with significant differences in the microhabitats of exposed ground and under living shrubs. There was an increasing trend in soil organic carbon(SOC), soil total nitrogen(STN), soil available phosphorous(SAP), and C:P and N:P ratios from exposed ground to under living shrubs and to under dead shrubs. No significant differences were found in soil total phosphorous(STP) and soil available nitrogen(SAN), or in ratios of C:N and SAN:SAP. Higher soil urease(SUE) and soil nitrate reductase(SNR) activities were found in soil under dead shrubs, while higher soil sucrase(STC) and soil β-glucosidase(SBG) activities were respectively found in exposed ground and under living shrubs. Soil alkaline phosphatase(AKP) activity reached its lowest value under dead shrubs, and there was no significant difference between the microhabitats of exposed ground and under living shrubs. Results indicated that the photosynthesis-related C of S. caninervis remained stable under the three microhabitats while N and P were mediated by the microhabitats. The growth strategy of S. caninervis varied in different microhabitats because of the different energy cycles and nutrient balances. The changes of stoichiometry in soil were not mirrored in the moss. We conclude that microhabitat could change the growth strategy of moss and nutrients cycling of moss patches. 展开更多
关键词 MOSS stoichiometry Syntrichia caninervis MICROHABITATS SOIL stoichiometry SOIL enzyme Gurbantunggut DESERT
下载PDF
Ecological stoichiometry of nitrogen, phosphorous, and sulfur in China's forests 被引量:3
10
作者 Yuntao Wu Hongyan Liu +4 位作者 Zhaoliang Song Xiaomin Yang Zichuan Li Qian Hao Linan Liu 《Acta Geochimica》 EI CAS CSCD 2017年第3期525-530,共6页
Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ... Much attention has been paid to the stoichiometry of carbon(C), nitrogen(N), and phosphorus(P) because of their significance for plant growth and climate change. However, other nutrients, such as sulfur(S), are often ignored. In this study, we analyzed the stoichiometry of N, P, and S in leaves of 348 plant species in China's forests. The results show higher N content and higher molar ratios of N/P and P/S in Angiospermae than in Gymnospermae. At the family level, Ulmaceae absorbed more N and P from soils than other families, and Cupressaceae absorbed more S than other families. In addition,except for bamboo and other tropical forests, leaf N and P content of China's forests generally increased from low to middle latitudes and then slightly decreased or plateaued at high latitudes. Plant ecotypes, taxonomic groups, environmental conditions, atmospheric S precipitation, and soil-available N and P significantly affected the distribution and stoichiometry of leaf N, P, and S in China's forests.Our study indicates that China's forests are likely limited by P and S deficiencies which may increase in the future. 展开更多
关键词 FOREST stoichiometry Nitrogen Phosphorous SULFUR China
下载PDF
Response of cellular stoichiometry and phosphorus storage of the cyanobacteria A phanizomenon flos-aquae to smallscale turbulence 被引量:3
11
作者 李哲 肖艳 +3 位作者 杨吉祥 李超 高遐 郭劲松 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2017年第6期1409-1416,共8页
Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the ce... Turbulent mixing, in particular on a small scale, aff ects the growth of microalgae by changing diff usive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under dif ferent turbulent mixing conditions. A phanizomenon flos-aquae were cultivated in dif ferent stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s 3 to 0.050 58 m 2/s 3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory ef fect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum ef fective quantum yield of PSII(the ratio of F v/F m) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the dif fusive sublayer, regulating the nutrient flux of cells. 展开更多
关键词 Aphanizomenon flos-aquae cellular stoichiometry PHOTOSYNTHESIS POLYPHOSPHATE turbulent dissipation rate
下载PDF
Ecological stoichiometry and biomass response of Agropyron michnoi Roshev.under simulated N deposition in a sandy grassland,China 被引量:3
12
作者 JIN Xiaoming YANG Xiaogang +4 位作者 ZHOU Zhen ZHANG Yingqi YU Liangbin ZHANG Jinghua LIANG Runfang 《Journal of Arid Land》 SCIE CSCD 2020年第5期741-751,共11页
Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the ma... Sandy grassland in northern China is a fragile ecosystem with poor soil fertility.Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen(N)deposition is crucial for the management of the sandy grassland ecosystem.We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev.responses of both aboveground and belowground biomasses and carbon(C),N and phosphorus(P)concentrations in the plant tissues and soil.With increasing N addition,both aboveground and belowground biomasses and C,N and P concentrations in the plant tissues increased and exhibited a single-peak curve.C:N and C:P ratios of the plant tissues first decreased but then increased,while the trend for N:P ratio was opposite.The peak values of aboveground biomass,belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2•a),while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2•a).The maximum growth percentages of aboveground and belowground biomasses were 324.2%and 75.9%,respectively,and the root to shoot ratio(RSR)decreased with the addition of N.N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems,while C concentration was ranked as roots>leaves>stems.The increase in N concentration in the plant tissues was the largest(from 34%to 162%),followed by the increase in P(from 10%to 33%)and C(from 8%to 24%)concentrations.The aboveground biomass was positively and linearly correlated with leaf C,N and P,and soil C and N concentrations,while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations.These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass,while the accumulation of leaf N resulted in the increase in the belowground biomass.N deposition can alter the allocation of C,N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass,which is conducive to the restoration of sandy grassland. 展开更多
关键词 BIOMASS nitrogen deposition plant tissue C N and P stoichiometry sandy grassland
下载PDF
Changes in ecological stoichiometry and nutrient resorption in Castanopsis hystrix plantations along an urbanization gradient in the lower subtropics 被引量:2
13
作者 Feifan Li Bing Sun +1 位作者 Zhaowan Shi Nancai Pei 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2323-2331,共9页
The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the under... The stoichiometry of carbon,nitrogen and phosphorous in plants can reflect the interactions between plants and their environment.The interplay between plant nutrients,climatic factors,and soil properties and the underlying regulatory mechanisms are pillars of ecology but remain underexplored.In this study of plant C-N-P stoichiometry and nutrient resorption in Castanopsis hystrix groves in three cities(Guangzhou,Zhongshan,and Lechang)that represent an urban-rural gradient in Guangdong Province,South China,we explored potential relationships among NO_(2) concentrations,diameter at breast height(DBH),and resident human population.Mean annual temperature,mean annual precipitation,insolation duration per year,and the human resident population differed significantly among the three cities.Soil C-N-P was always highest in suburban Lechang,and the concentration of NO_(2) was highest in urban Guanghzou(55.33±0.67μg m^(-3))and positively correlated with the resident population and leaf N:P.Our findings suggest that C-N-P stoichiometry of C.hystrix was better explained by NO_(2)than by soil C-N-P stoichiometry and that nutrient resorption was better explained by leaf nutrients and DBH than by NO_(2) and soil stoichiometry.Our study supports the hypothesis that rapid urbanization influences NO_(2) concentrations and microclimate,which may jointly change the stoichiometry of plant nutrients in the forest ecosystems. 展开更多
关键词 Ecological stoichiometry Nutrient cycling Plant-environment interaction Subtropical forest Urban–rural gradient
下载PDF
Age-related changes of leaf traits and stoichiometry in an alpine shrub(Rhododendron agglutinatum) along altitudinal gradient 被引量:9
14
作者 WANG Meng LIU Guo-hu +4 位作者 JIN Tian-tian LI Zong-shan GONG Li WANG Hao YE Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第1期106-118,共13页
Leaf morphological and stoichiometric characteristics are considered to represent both the interior inheritable characters in the plant and its adaptations to specific exterior environments. Rhododendron agglutinatum,... Leaf morphological and stoichiometric characteristics are considered to represent both the interior inheritable characters in the plant and its adaptations to specific exterior environments. Rhododendron agglutinatum,an evergreen alpine shrub species,occupies a wide range of habitats above timberline in the Miyaluo Natural Reserve,southwestern China. Along an altitudinal gradient ranging from 3700 to 4150 m,we measured leaf morphological characters including leaf dry matter content(LDMC),leaf dry mass per unit area(LMA),and one leaf area(OLA),as well as carbon(C) and nutrient(N,P) contents in leaves of three different age groups(juvenile leaves,mature leaves and senescent leaves). We also calculated the stoichiometric relationships among carbon and nutrients(C/N,C/P and N/P). Results showed thatboth age and altitude affected the leaf morphological and stoichiometric properties of R. agglutinatum. Mature leaves possessed the highest LDMC,LMA and C contents both on a dry mass basis and on a unit area basis. Younger leaves possessed higher contents of nutrients. OLA as well as ratios between carbon and nutrients(C/N,C/P) increased with ages. Juvenile leaves possessed lowest ratio between nitrogen and phosphorus. In juvenile leaves,nutrients increased with altitudinal elevation,whereas other traits decreased. In mature leaves,nutrients and their ratios with carbon showed consistent trends with juvenile leaves along increasing altitude,whereas LMA and carbon on a unit area basis showed opposite trends with juvenile leaves along increasing altitude. In senescent leaves,only content of phosphorus on a unit area basis and N/P were found linearly correlated with altitude. Our results demonstrated a clear pattern of nutrient distribution with aging process inleaves and indicated that a high possibility of N limitation in this region. We also concluded that younger leaves could be more sensitive to climate changes due to a greater altitudinal influence on the leaf traits in younger leaves than those in elder leaves. 展开更多
关键词 Leaf traits stoichiometry Rhododendron agglutinatum Altitude Age Alpine Shrub
下载PDF
Solar radiation effects on leaf nitrogen and phosphorus stoichiometry of Chinese fir across subtropical China 被引量:1
15
作者 Ran Tong Yini Cao +3 位作者 Zhihong Zhu Chenyang Lou Benzhi Zhou Tonggui Wu 《Forest Ecosystems》 SCIE CSCD 2021年第4期831-840,共10页
Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slo... Background:Solar radiation(SR)plays critical roles in plant physiological processes and ecosystems functions.However,the exploration of SR influences on the biogeochemical cycles of forest ecosystems is still in a slow progress,and has important implications for the understanding of plant adaption strategy under future environmental changes.Herein,this research was aimed to explore the influences of SR on plant nutrient characteristics,and provided theoretical basis for introducing SR into the establishment of biochemical models of forest ecosystems in the future researches.Methods:We measured leaf nitrogen(N)and phosphorus(P)stoichiometry in 19 Chinese fir plantations across subtropical China by a field investigation.The direct and indirect effects of SR,including global radiation(Global R),direct radiation(Direct R)and diffuse radiation(Diffuse R)on the leaf N and P stoichiometry were investigated.Results:The linear regression analysis showed that leaf N concentration had no association with SR,while leaf P concentration and N:P ratio were negatively and positively related to SR,respectively.Partial least squares path model(PLS-PM)demonstrated that SR(e.g.Direct R and Diffuse R),as a latent variable,exhibited direct correlations with leaf N and P stoichiometry as well as the indirect correlation mediated by soil P content.The direct associations(path coefficient=−0.518)were markedly greater than indirect associations(path coefficient=−0.087).The covariance-based structural equation modeling(CB-SEM)indicated that SR had direct effects on leaf P concentration(path coefficient=−0.481),and weak effects on leaf N concentration.The high SR level elevated two temperature indexes(mean annual temperature,MAT;≥10°C annual accumulated temperature,≥10℃ AAT)and one hydrological index(mean annual evapotranspiration,MAE),but lowered the soil P content.MAT,MAE and soil P content could affect the leaf P concentration,which cause the indirect effect of SR on leaf P concentration(path coefficient=0.004).Soil N content had positive effect on the leaf N concentration,which was positively and negatively regulated by MAP and≥10℃ AAT,respectively.Conclusions:These results confirmed that SR had negatively direct and indirect impacts on plant nutrient status of Chinese fir based on a regional investigation,and the direct associations were greater than the indirect associations.Such findings shed light on the guideline of taking SR into account for the establishment of global biogeochemical models of forest ecosystems in the future studies. 展开更多
关键词 Solar radiation LEAF SOIL Nitrogen and phosphorus stoichiometry Chinese fir
下载PDF
Spatial patterns of leaf nitrogen and phosphorus stoichiometry across southeast to central Tibet 被引量:1
16
作者 WANG Wei ZHAO Jia-min XING Zhen 《Journal of Mountain Science》 SCIE CSCD 2022年第9期2651-2663,共13页
Leaf N and P stoichiometry in terrestrial ecosystems has been widely investigated in recent years owing to the importance of these elements in improving the predicted vegetation responses to global changes.The vertica... Leaf N and P stoichiometry in terrestrial ecosystems has been widely investigated in recent years owing to the importance of these elements in improving the predicted vegetation responses to global changes.The vertical distribution of leaf N and P stoichiometry has attracted increasing attention because of the dramatic changes in environmental factors at regional scales.However,the characteristics of leaf N and P stoichiometry in the southeast Qinghai–Tibet plateau(SET)are not clear,although this area is sensitive to global change.Here,we analyzed the leaf N and P concentrations in dominant plant species on natural altitudinal gradients on the Duoxiongla(DXL),Sejila(SJL),Mila(ML),and Gangbala(GBL)mountains across the SET all the way to central Tibet.Our results showed that the leaf N concentrations were comparable among the regions,whereas the leaf P concentrations dramatically decreased from SET to central Tibet(CT).The leaf N concentrations were 23.6,21.3,20.8,and 22.4 g kg^(-1),and the leaf P concentrations were 2.40,2.49,1.94,and 1.59 g kg^(-1) on the SJL,DXL,ML and GBL mountains,respectively.The leaf N/P ratios on the DXL,SJL,ML,and GBL mountains were 8.81,10.3,11.2,and 14.2,respectively.Considering the increasing trend of the leaf N/P ratio from southeast Qinghai–Tibet plateau to central Tibet,N limitation might widely exist in well vegetated ecosystems in the Qinghai–Tibet plateau. 展开更多
关键词 Leaf N and P concentration Southeast Tibet stoichiometry Spatial variations
下载PDF
Decomposition dynamics and ecological stoichiometry of Quercus acutissima and Pinus densiflora litter in the Grain to Green Program Area of northern China
17
作者 Jianni Sun Peng Gao +2 位作者 Haidong Xu Cheng Li Xiang Niu 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第5期1613-1623,共11页
Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release durin... Litter decomposition and ecological stoichiometry of nutrient release is an important part of material cycling and energy flow in forest ecosystems.In a study of the ecological stoichiometry and nutrient release during litter decomposition in a pine–oak forest ecosystem of the Grain to Green Program(GTGP)area of northern China,a typical pine and oak species(PDS:Pinus densiflora Sieb.,QAC:Quercus acutissima Carr.)were selected in the Taiyi Mountain study area.The ecological stoichiometry characteristics of carbon(C),nitrogen(N)and phosphorus(P)and litter decomposition dynamics were studied by field sampling and quantitative analyses.The results showed the following.(1)The decomposition dynamics of both litters was slow-fast-slow.The most important climatic factor affecting the litter decomposition rate from May to October was precipitation and temperature from November to April of the following year.(2)Throughout the 300-day study,in both litters,C of the two litters was released,N first accumulated and was then released,and P exhibited a release-accumulate-release pattern.(3)C:P was significantly higher than C:N and N:P(p<0.05);the C:N of PSD litter was higher than that of QAC(p<0.05),but the N:P of QAC litter was higher than that of PSD litter(p<0.05).The C:N of both litters was very high in the study area,indicating that the nutrient release ability during litter decomposition in the two typical pine–oak forest ecosystems was relatively weak;therefore,more attention should be paid to nitrogen-fixing species and mixed forests in the GTGP area of northern China. 展开更多
关键词 Decomposition dynamics Ecological stoichiometry LITTER Pinus densiflora Quercus acutissima Grain to Green Program(GTGP)
下载PDF
Total Maximum Allocated Loads on Stoichiometry of Nitrogen and Identification of Critical Form in Jiaozhou Bay, China
18
作者 LIN Guohong SONG Xianli +3 位作者 LU Dongliang LI Keqiang LIANG Shengkang WANG Xiulin 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期622-632,共11页
Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN o... Total pollutant load control management for total dissolved nitrogen(TDN) is an urgent task required to gain a good water quality status in Jiaozhou Bay(JZB), China. In this paper, the stoichiometry of multiform TDN on land-ocean interactions associated with marine biogeochemical reaction(LOIMBR) was studied by modeling the load-response relationship based on a three-dimensional water quality model of nitrogen in JZB. The results showed that the stoichiometry on LOIMBR of dissolved organic nitrogen(DON), NO3-N and NH4-N was 3:1:1, with one-third of the contribution on the concentration of dissolved inorganic nitrogen(DIN) in JZB for the land-based DON loads to DIN loads. Based on the stoichiometric relationship of nitrogen forms, the total maximum allocated load(TMAL) of equivalent TDN(ETDN) was approximately 5300 t a^-1 in JZB, equivalent to the TMAL of 5700, 5800 and 15600 t a^-1 for NH4-N, NO3-N and DON, respectively. According to the loads of ETDN, there were four outfalls overloaded in JZB in 2015, which lie in the head of the bay. In the four overloaded outfalls, besides NO3-N, NH4-N was the critical nitrogen control form for Moshui River, while DON for Dagu River and Haibo River. The results of numerical experiments further showed that JZB will achieve good water quality after 7 years by implementation of the 'different emission reduction' based on TMAL of ETDN, which is significantly better than 'equal percent removal'. 展开更多
关键词 total dissolved nitrogen water quality stoichiometry total maximum allocated load Jiaozhou Bay
下载PDF
Effect of the stoichiometry on the electronic structure of the Ni(111)/α-Al_2O_3(0001) interface:a first-principles investigation
19
作者 施思齐 田中真悟 香山正憲 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2655-2661,共7页
In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left.... In this paper first-principles calculations of Ni(111)/α-Al2O3(0001) interfaces have been performed, and are compared with the preceding results of the Cu (111)/α-Al2O3(0001) interface [2004 Phil. Mag. Left. 84 425]. The AI- terminated and O-terminated interfaces have quite different adhesion mechanisms, which are similar to the Cu(111)/α Al2O3(0001) interface. For the O-terminated interface, the adhesion is caused by the strong O-2p/Ni-3d orbital hybridization and ionic interactions. On the other hand, the adhesion nature of the Al-terminated interface is the image-like electrostatic and Ni-Al hybridization interactions, the latter is substantial and cannot be neglected. Charge transfer occurs from Al2O3 to Ni, which is opposite to that in the O=terminated interface. The charge transfer direction for the Al-terminated and O-terminated Ni(111)/α-A1203(0001) interfaces is similar to that in the corresponding Cu(111)/α- Al2O3(0001) interface, but there exist the larger charge transfer quantity and consequent stronger adhesion nature, respectively. 展开更多
关键词 metal/ceramic interface stoichiometry electronic structure first-principles calculations
下载PDF
Patterns and driving factors of leaf C,N,and P stoichiometry in two forest types with different stand ages in a mid-subtropical zone
20
作者 Yunni Chang Quanlin Zhong +3 位作者 Hong Yang Chaobin Xu Weiping Hua Baoyin Li 《Forest Ecosystems》 SCIE CSCD 2022年第1期47-56,共10页
Background:Carbon(C),nitrogen(N),and phosphorus(P)stoichiometry is a key indicator of nutrient utilization in plants,and C/N/P ratios are related to the life histories and adaptation strategies of tree species.However... Background:Carbon(C),nitrogen(N),and phosphorus(P)stoichiometry is a key indicator of nutrient utilization in plants,and C/N/P ratios are related to the life histories and adaptation strategies of tree species.However,no consensus has been reached on how leaf stoichiometric characteristics are affected by forest type and stand ages.The relationships between leaf stoichiometry and geographical,meteorological,and soil factors also remain poorly understood.Methods:Leaf and soil were sampled from forest stands of different age groups(young,middle-aged,near-mature,and mature)in two forest types(Chinese fir(Cunninghamia lanceolata)forests and evergreen broadleaved forests).The relationships between leaf C,N,and P stoichiometric parameters and geographical,meteorological,and soil factors were analysed by using redundancy analysis(RDA)and stepwise linear regression analysis.Results:Leaf C concentrations peaked in the near-mature stands with increasing age irrespective of forest type.Leaf N and P concentrations fluctuated with a rising trend in Chinese fir forests,while decreased first and increased later from young to mature phases in natural evergreen broadleaved forests.Chinese fir forests were primarily limited by N and P,while natural evergreen broadleaved forests were more susceptible to P limitation.Leaf C,N,and P stoichiometric characteristics in Chinese fir forests were mainly affected by the soil total P concentration(SP),longitude(LNG),growing season precipitation(GSP)and mean temperature in July(JUT).The leaf C concentration was mainly affected by GSP and JUT;leaf N and P concentrations were both positively correlated with LNG;and leaf P was positively correlated with SP.In evergreen broadleaved forests,however,leaf stoichiometric parameters displayed significant correlations with latitude(LAT)and mean annual precipitation(MAP).Conclusions:Leaf stoichiometry differed among forest stands of different age groups and forest types.Leaf C,N,and P stoichiometry was primarily explained by the combinations of SP,LNG,GSP and JUT in Chinese fir forests.LAT and MAP were the main controlling factors affecting the variations in the leaf C,N,and P status in natural evergreen broadleaved forests,which supports the temperature-plant physiological hypothesis.These findings improve the understanding of the distribution patterns and driving mechanisms of leaf stoichiometry linked with stand age and forest type. 展开更多
关键词 Leaf stoichiometry C/N/P ratios Environmental factors Stand age groups Chinese fir forest Natural evergreen broadleaved forest
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部